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ABSTRACT 

 

Ensuring the quality of milk is a critical challenge in the food industry, with significant 

implications for consumer safety, economic efficiency, and supply chain reliability. 

Traditional methods of milk quality assessment, such as chemical analysis and sensory 

evaluations, while accurate, are labor-intensive, costly, and unsuitable for real-time or large 

scale applications. The growing adoption of artificial intelligence (AI) has introduced 

advanced methods for automating these processes, yet most existing AI-based approaches 

rely on single-modality data, such as either visual features or numerical measurements. 

These methods are often limited in their ability to capture the multidimensional nature of 

milk quality indicators, resulting in reduced prediction accuracy and robustness. This study 

seeks to address these limitations by developing a multimodal deep learning model that 

combines image and numerical data for classifying milk quality into three categories which 

are good, spoiling, and spoiled. This study employs intermediate fusion and late fusion 

techniques to combine the outputs of pre-trained models for each modality. This study also 

highlights the potential of multimodal deep learning in addressing the complex interplay of 

physical and chemical factors influencing milk quality. Results show that the intermediate 

fusion technique achieved an accuracy of 98.87% while late fusion technique using 

concatenation with proposed layers achieved an accuracy of 99.77% This proves that the 

multimodal framework outperforms single-modality approaches in terms of accuracy, 

scalability, and generalizability across diverse milk storage and spoilage conditions. By 

incorporating complementary data sources, the proposed framework achieves a holistic and 

automated approach to milk quality assessment, suitable for industrial-scale applications. 

Additionally, the study contributes to the advancement of fusion strategies in multimodal 

AI, demonstrating the efficacy of combining heterogeneous data for improved decision 

making. While the findings are promising, the research also identifies several areas for 

further investigation. Future work could explore the integration of additional modalities, 

such as odor sensors or spectral data, to further enhance classification performance. 

Extending the framework to other perishable goods could also validate its applicability in 

broader food quality assessment contexts. This study not only bridges an important gap in 

the literature but also sets a foundation for scalable, efficient, and robust AI-driven solutions 

in food safety and quality control. 
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ANALISIS KUALITI SUSU DENGAN PENCANTUMAN DATA MULTIMODAL: 

MENGGABUNGKAN CIRI IMEJ DAN BERANGKA 

 

ABSTRAK 

 

Menjamin kualiti susu merupakan satu cabaran kritikal dalam industri makanan, dengan 

implikasi besar terhadap keselamatan pengguna, kecekapan ekonomi, dan 

kebolehpercayaan rantaian bekalan. Kaedah tradisional untuk menilai kualiti susu seperti 

analisis kimia dan penilaian deria, walaupun tepat, memerlukan tenaga kerja yang tinggi, 

mahal, dan tidak sesuai untuk aplikasi masa nyata atau berskala besar. Penerapan 

kecerdasan buatan (AI) yang semakin berkembang telah memperkenalkan kaedah canggih 

untuk mengautomasikan proses ini. Namun begitu, kebanyakan pendekatan berasaskan AI 

yang sedia ada masih bergantung kepada data satu-modality, sama ada ciri visual atau 

pengukuran berangka. Pendekatan ini sering terhad dalam keupayaan untuk menangkap 

sifat multidimensi penunjuk kualiti susu, yang akhirnya mengurangkan ketepatan ramalan 

dan keteguhan model. Kajian ini bertujuan untuk menangani kekangan tersebut dengan 

membangunkan model pembelajaran mendalam multimodal yang menggabungkan data imej 

dan data berangka untuk mengklasifikasikan kualiti susu kepada tiga kategori iaitu baik, 

mula rosak, dan rosak. Kajian ini menggunakan teknik fusion pertengahan (intermediate 

fusion) dan fusion lewat (late fusion) untuk menggabungkan output daripada model pra-

latih bagi setiap modality. Empat kaedah fusion diuji bagi fusion lewat iaitu penggabungan 

(concatenation), pengumpulan maksimum (max pooling), pengundian ensemble (voting 

ensemble), dan purata berwajaran (weighted averaging). Keputusan menunjukkan bahawa 

rangka kerja multimodal mengatasi pendekatan satu-modality dari segi ketepatan, 

kebolehsuaian skala, dan keumuman merentas pelbagai keadaan penyimpanan dan 

kerosakan susu. Penyelidikan ini menyerlahkan potensi pembelajaran mendalam 

multimodal dalam menangani interaksi kompleks antara faktor fizikal dan kimia yang 

mempengaruhi kualiti susu. Dengan menggabungkan sumber data yang saling melengkapi, 

rangka kerja yang dicadangkan ini menyediakan pendekatan yang menyeluruh dan 

automatik dalam penilaian kualiti susu yang sesuai untuk aplikasi skala industri. Selain itu, 

kajian ini menyumbang kepada kemajuan strategi fusion dalam AI multimodal dengan 

membuktikan keberkesanan gabungan data heterogen bagi meningkatkan proses membuat 

keputusan. Walaupun penemuan yang diperoleh adalah memberangsangkan, kajian ini juga 

mengenal pasti beberapa aspek untuk penyelidikan lanjut. Kajian masa hadapan boleh 

meneroka integrasi modality tambahan seperti sensor bau atau data spektrum bagi 

meningkatkan lagi prestasi klasifikasi. Memperluas rangka kerja ini kepada barangan 

mudah rosak yang lain juga dapat mengesahkan kebolehgunaan pendekatan ini dalam 

konteks penilaian kualiti makanan yang lebih meluas. Kajian ini bukan sahaja merapatkan 

jurang penting dalam literatur, tetapi juga meletakkan asas kepada penyelesaian AI yang 

boleh diskalakan, cekap dan teguh dalam keselamatan makanan dan kawalan kualiti. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Artificial intelligence (AI) has become a transformative force across numerous 

industries, revolutionizing fields ranging from healthcare (Dipietro et al., 2024; Murugan et 

al., 2024) and autonomous systems (Aruna et al., 2024; Dakic et al., 2024) to agriculture 

(Ballester et al., 2024; Chen et al., 2024 b; Logeshwaran et al., 2024) and manufacturing 

(Orabi et al., 2024). Central to this revolution is deep learning, a subset of AI that excels in 

extracting meaningful patterns from large and complex datasets. Deep learning’s ability to 

model intricate relationships in data has made it the foundation for numerous innovative 

solutions. Among its recent breakthroughs, multimodal deep learning has emerged as a 

particularly powerful approach for addressing complex classification and decision-making 

problems (Mathematics et al., 2024). 

Multimodal deep learning is characterized by its ability to process and integrate 

information from multiple data sources, or modalities, which may include visual, numerical, 

textual, or audio data. By combining these diverse forms of data, the technique leverages the 

complementary strengths of each modality, capturing a richer and more holistic 

representation of the underlying phenomenon. This integration enables multimodal systems 

to outperform single-modality approaches, which often suffer from incomplete or biased 

representations (Singh et al., 2023). Moreover, multimodal deep learning enhances 
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robustness by compensating for missing or noisy data in one modality with information from 

others, making it particularly suited to real-world applications (Wei et al., 2024). 

Multimodal deep learning is particularly valuable in applications where diverse types 

of data contribute complementary insights, enabling a deeper understanding of complex 

phenomena. By combining distinct data sources, this approach allows systems to exploit the 

strengths of each modality, creating a more comprehensive and accurate representation than 

single-modality methods can achieve (Singh et al., 2024). In the context of food quality 

assessment, multimodal techniques are especially impactful, as they can integrate multiple 

forms of information, such as visual data capturing physical characteristics like color, 

texture, or structural changes, and numerical data reflecting environmental or chemical 

properties such as pH levels, temperature, or storage time. 

Milk, being a highly perishable and widely consumed food product (Boudahri et al., 

2022; De Klerk et al., 2022), exemplifies an application area where such integration is 

critical. As milk quality is influenced by numerous factors, such as microbial activity, storage 

conditions, and environmental exposure, relying on a single modality can result in 

incomplete or unreliable assessments. Visual indicators like discoloration or changes in 

texture may suggest spoilage, but these alone are insufficient for precise classification. 

Similarly, numerical measurements such as pH or temperature provide valuable quantitative 

insights but may not capture the full picture. Combining these modalities through 

multimodal deep learning can address these limitations, offering a more robust and holistic 

assessment. 

Accurate and efficient milk quality evaluation is essential not only for ensuring 

consumer safety but also for reducing economic losses and maintaining public trust in food 
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supply chains (Kumar et al., 2024; Nukapeyi et al., 2024). By leveraging multimodal data, 

advanced AI systems can contribute to the development of scalable and automated quality 

control solutions, which are vital for meeting the demands of modern food production and 

distribution systems. Traditional methods of milk quality assessment, such as laboratory 

analyses (Ibrahim et al., 2023; Mahrous et al., 2023) and sensory evaluations (Kim et al., 

2022), have long been the standard for ensuring product safety and freshness. These 

techniques typically involve precise chemical tests, microbial analysis, or expert sensory 

judgment to determine spoilage or contamination levels. While effective, these approaches 

are inherently resource-intensive, requiring specialized equipment, trained personnel, and 

considerable time to produce results. In large-scale production and supply chain contexts, 

these limitations can lead to inefficiencies, delays, and increased costs, underscoring the 

need for faster, more scalable solutions. 

AI-driven approaches, particularly those leveraging machine learning and deep 

learning, have emerged as transformative alternatives to traditional methods (Temilade 

Abass et al., 2024). By automating quality assessment processes, these technologies can 

significantly reduce the time and resources required, enabling real-time monitoring and rapid 

decision-making. However, many current AI implementations focus on single-modality 

data, such as analyzing visual features like color changes or sediment formation, or 

processing numerical attributes such as pH levels, temperature, and storage time. While these 

single-modality approaches have shown promise, they often fail to capture the intricate 

relationships between diverse data types, limiting their overall accuracy and reliability 

(Dubey, 2023). 
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Multimodal techniques offer a compelling solution by combining image data with 

numerical information, leveraging the strengths of both modalities to deliver more robust 

predictions (Dao, 2022). For instance, visual data can detect subtle changes in milk’s 

physical appearance, such as discoloration or texture changes, which might indicate 

spoilage. At the same time, numerical data provides critical quantitative insights, such as 

deviations in pH levels or temperature thresholds, which are not observable through images 

alone. By integrating these data sources through advanced deep learning architectures, 

multimodal methods can achieve a more holistic understanding of milk quality, reducing 

false positives and negatives and increasing the reliability of predictions. 

Despite its potential, the application of multimodal deep learning in milk quality 

classification remains underexplored, with existing research often constrained by a reliance 

on single-modality approaches. These methods typically analyze either visual data, such as 

images capturing physical changes in the milk, or numerical data, such as measurements of 

pH, temperature, or storage conditions. While these single-modality approaches can provide 

valuable insights, their isolated nature often results in suboptimal outcomes, as they fail to 

capture the full spectrum of information that multimodal data offers. This limitation 

highlights the need for more sophisticated solutions that integrate multiple data types for a 

more comprehensive analysis. 

Multimodal deep learning has the potential to address these shortcomings by 

combining visual and numerical modalities, creating a synergistic framework that enhances 

classification accuracy and robustness. For example, visual data might identify surface 

discoloration or textural changes, while numerical data provides quantifiable metrics like 

temperature fluctuations or pH levels, which are critical indicators of spoilage. Together, 




