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ABSTRACT

Ensuring the quality of milk is a critical challenge in the food industry, with significant
implications for consumer safety, economic efficiency, and supply chain reliability.
Traditional methods of milk quality assessment, such as chemical analysis and sensory
evaluations, while accurate, are labor-intensive, costly, and unsuitable for real-time or large
scale applications. The growing adoption of artificial intelligence (AI) has introduced
advanced methods for automating these processes, yet most existing Al-based approaches
rely on single-modality data, such as either visual features or numerical measurements.
These methods are often limited in their ability to capture the multidimensional nature of
milk quality indicators, resulting in reduced prediction accuracy and robustness. This study
seeks to address these limitations by developing a multimodal deep learning model that
combines image and numerical data for classifying milk quality into three categories which
are good, spoiling, and spoiled. This study employs intermediate fusion and late fusion
techniques to combine the outputs of pre-trained models for each modality. This study also
highlights the potential of multimodal deep learning in addressing the complex interplay of
physical and chemical factors influencing milk quality. Results show that the intermediate
fusion technique achieved an accuracy of 98.87% while late fusion technique using
concatenation with proposed layers achieved an accuracy of 99.77% This proves that the
multimodal framework outperforms single-modality approaches in terms of accuracy,
scalability, and generalizability across diverse milk storage and spoilage conditions. By
incorporating complementary data sources, the proposed framework achieves a holistic and
automated approach to milk quality assessment, suitable for industrial-scale applications.
Additionally, the study contributes to the advancement of fusion strategies in multimodal
Al, demonstrating the efficacy of combining heterogeneous data for improved decision
making. While the findings are promising, the research also identifies several areas for
further investigation. Future work could explore the integration of additional modalities,
such as odor sensors or spectral data, to further enhance classification performance.
Extending the framework to other perishable goods could also validate its applicability in
broader food quality assessment contexts. This study not only bridges an important gap in
the literature but also sets a foundation for scalable, efficient, and robust Al-driven solutions
in food safety and quality control.



ANALISIS KUALITI SUSU DENGAN PENCANTUMAN DATA MULTIMODAL:
MENGGABUNGKAN CIRI IMEJ DAN BERANGKA

ABSTRAK

Menjamin kualiti susu merupakan satu cabaran kritikal dalam industri makanan, dengan
implikasi  besar terhadap keselamatan pengguna, kecekapan ekonomi, dan
kebolehpercayaan rantaian bekalan. Kaedah tradisional untuk menilai kualiti susu seperti
analisis kimia dan penilaian deria, walaupun tepat, memerlukan tenaga kerja yang tinggi,
mahal, dan tidak sesuai untuk aplikasi masa nyata atau berskala besar. Penerapan
kecerdasan buatan (Al) yang semakin berkembang telah memperkenalkan kaedah canggih
untuk mengautomasikan proses ini. Namun begitu, kebanyakan pendekatan berasaskan Al
vang sedia ada masih bergantung kepada data satu-modality, sama ada ciri visual atau
pengukuran berangka. Pendekatan ini sering terhad dalam keupayaan untuk menangkap
sifat multidimensi penunjuk kualiti susu, yang akhirnya mengurangkan ketepatan ramalan
dan keteguhan model. Kajian ini bertujuan untuk menangani kekangan tersebut dengan
membangunkan model pembelajaran mendalam multimodal yang menggabungkan data imej
dan data berangka untuk mengklasifikasikan kualiti susu kepada tiga kategori iaitu baik,
mula rosak, dan rosak. Kajian ini menggunakan teknik fusion pertengahan (intermediate
fusion) dan fusion lewat (late fusion) untuk menggabungkan output daripada model pra-
latih bagi setiap modality. Empat kaedah fusion diuji bagi fusion lewat iaitu penggabungan
(concatenation), pengumpulan maksimum (max pooling), pengundian ensemble (voting
ensemble), dan purata berwajaran (weighted averaging). Keputusan menunjukkan bahawa
rangka kerja multimodal mengatasi pendekatan satu-modality dari segi ketepatan,
kebolehsuaian skala, dan keumuman merentas pelbagai keadaan penyimpanan dan
kerosakan susu. Penyelidikan ini menyerlahkan potensi pembelajaran mendalam
multimodal dalam menangani interaksi kompleks antara faktor fizikal dan kimia yang
mempengaruhi kualiti susu. Dengan menggabungkan sumber data yang saling melengkapi,
rangka kerja yang dicadangkan ini menyediakan pendekatan yang menyeluruh dan
automatik dalam penilaian kualiti susu yang sesuai untuk aplikasi skala industri. Selain itu,
kajian ini menyumbang kepada kemajuan strategi fusion dalam Al multimodal dengan
membuktikan keberkesanan gabungan data heterogen bagi meningkatkan proses membuat
keputusan. Walaupun penemuan yang diperoleh adalah memberangsangkan, kajian ini juga
mengenal pasti beberapa aspek untuk penyelidikan lanjut. Kajian masa hadapan boleh
meneroka integrasi modality tambahan seperti sensor bau atau data spektrum bagi
meningkatkan lagi prestasi klasifikasi. Memperluas rangka kerja ini kepada barangan
mudah rosak yang lain juga dapat mengesahkan kebolehgunaan pendekatan ini dalam
konteks penilaian kualiti makanan yang lebih meluas. Kajian ini bukan sahaja merapatkan
jurang penting dalam literatur, tetapi juga meletakkan asas kepada penyelesaian Al yang
boleh diskalakan, cekap dan teguh dalam keselamatan makanan dan kawalan kualiti.
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CHAPTER 1

INTRODUCTION

1.1 Background

Artificial intelligence (AI) has become a transformative force across numerous
industries, revolutionizing fields ranging from healthcare (Dipietro et al., 2024; Murugan et
al., 2024) and autonomous systems (Aruna et al., 2024; Dakic et al., 2024) to agriculture
(Ballester et al., 2024; Chen et al., 2024 b; Logeshwaran et al., 2024) and manufacturing
(Orabi et al., 2024). Central to this revolution is deep learning, a subset of Al that excels in
extracting meaningful patterns from large and complex datasets. Deep learning’s ability to
model intricate relationships in data has made it the foundation for numerous innovative
solutions. Among its recent breakthroughs, multimodal deep learning has emerged as a
particularly powerful approach for addressing complex classification and decision-making
problems (Mathematics et al., 2024).

Multimodal deep learning is characterized by its ability to process and integrate
information from multiple data sources, or modalities, which may include visual, numerical,
textual, or audio data. By combining these diverse forms of data, the technique leverages the
complementary strengths of each modality, capturing a richer and more holistic
representation of the underlying phenomenon. This integration enables multimodal systems
to outperform single-modality approaches, which often suffer from incomplete or biased

representations (Singh et al., 2023). Moreover, multimodal deep learning enhances



robustness by compensating for missing or noisy data in one modality with information from
others, making it particularly suited to real-world applications (Wei et al., 2024).

Multimodal deep learning is particularly valuable in applications where diverse types
of data contribute complementary insights, enabling a deeper understanding of complex
phenomena. By combining distinct data sources, this approach allows systems to exploit the
strengths of each modality, creating a more comprehensive and accurate representation than
single-modality methods can achieve (Singh et al., 2024). In the context of food quality
assessment, multimodal techniques are especially impactful, as they can integrate multiple
forms of information, such as visual data capturing physical characteristics like color,
texture, or structural changes, and numerical data reflecting environmental or chemical
properties such as pH levels, temperature, or storage time.

Milk, being a highly perishable and widely consumed food product (Boudahri et al.,
2022; De Klerk et al., 2022), exemplifies an application area where such integration is
critical. As milk quality is influenced by numerous factors, such as microbial activity, storage
conditions, and environmental exposure, relying on a single modality can result in
incomplete or unreliable assessments. Visual indicators like discoloration or changes in
texture may suggest spoilage, but these alone are insufficient for precise classification.
Similarly, numerical measurements such as pH or temperature provide valuable quantitative
insights but may not capture the full picture. Combining these modalities through
multimodal deep learning can address these limitations, offering a more robust and holistic
assessment.

Accurate and efficient milk quality evaluation is essential not only for ensuring

consumer safety but also for reducing economic losses and maintaining public trust in food
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supply chains (Kumar et al., 2024; Nukapeyi et al., 2024). By leveraging multimodal data,
advanced Al systems can contribute to the development of scalable and automated quality
control solutions, which are vital for meeting the demands of modern food production and
distribution systems. Traditional methods of milk quality assessment, such as laboratory
analyses (Ibrahim et al., 2023; Mahrous et al., 2023) and sensory evaluations (Kim et al.,
2022), have long been the standard for ensuring product safety and freshness. These
techniques typically involve precise chemical tests, microbial analysis, or expert sensory
judgment to determine spoilage or contamination levels. While effective, these approaches
are inherently resource-intensive, requiring specialized equipment, trained personnel, and
considerable time to produce results. In large-scale production and supply chain contexts,
these limitations can lead to inefficiencies, delays, and increased costs, underscoring the
need for faster, more scalable solutions.

Al-driven approaches, particularly those leveraging machine learning and deep
learning, have emerged as transformative alternatives to traditional methods (Temilade
Abass et al., 2024). By automating quality assessment processes, these technologies can
significantly reduce the time and resources required, enabling real-time monitoring and rapid
decision-making. However, many current Al implementations focus on single-modality
data, such as analyzing visual features like color changes or sediment formation, or
processing numerical attributes such as pH levels, temperature, and storage time. While these
single-modality approaches have shown promise, they often fail to capture the intricate
relationships between diverse data types, limiting their overall accuracy and reliability

(Dubey, 2023).



Multimodal techniques offer a compelling solution by combining image data with
numerical information, leveraging the strengths of both modalities to deliver more robust
predictions (Dao, 2022). For instance, visual data can detect subtle changes in milk’s
physical appearance, such as discoloration or texture changes, which might indicate
spoilage. At the same time, numerical data provides critical quantitative insights, such as
deviations in pH levels or temperature thresholds, which are not observable through images
alone. By integrating these data sources through advanced deep learning architectures,
multimodal methods can achieve a more holistic understanding of milk quality, reducing
false positives and negatives and increasing the reliability of predictions.

Despite its potential, the application of multimodal deep learning in milk quality
classification remains underexplored, with existing research often constrained by a reliance
on single-modality approaches. These methods typically analyze either visual data, such as
images capturing physical changes in the milk, or numerical data, such as measurements of
pH, temperature, or storage conditions. While these single-modality approaches can provide
valuable insights, their isolated nature often results in suboptimal outcomes, as they fail to
capture the full spectrum of information that multimodal data offers. This limitation
highlights the need for more sophisticated solutions that integrate multiple data types for a
more comprehensive analysis.

Multimodal deep learning has the potential to address these shortcomings by
combining visual and numerical modalities, creating a synergistic framework that enhances
classification accuracy and robustness. For example, visual data might identify surface
discoloration or textural changes, while numerical data provides quantifiable metrics like

temperature fluctuations or pH levels, which are critical indicators of spoilage. Together,
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