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 ABSTRACT 

 

Three dimensional (3D) printed polymer membrane is highly feasible for gravity-driven, oil-

water separation for oil spill remediation due to its reliable selective separations, high 

efficiency and switchable wettability. However, its underwater switchable wettability can be 

a challenge due to printing parameters; any surface alteration will modify the printed 

membrane wettability, enhanced by the influence of water temperature which can destabilize 

underwater superoleophobicity of the printed membrane. This study aimed to analyse the 

printing parameters’ effect on underwater switchable wettability in elevated water 

temperatures to improve the wettability of printed polymer membranes. For surface 

hydrophobicity improvement, printed polyamide membranes were immersed in a 

hydrophobic-candle soot/hexane mixture and subjected to sonication process. The 

parameters of ‘dry’ wettability, morphology, porosity, surface roughness and mechanical 

properties of the membranes were evaluated; the 3D printing parameters effect was also 

assessed. Moreover, this study uniquely examines the impact of printing parameters on 

underwater switchable wettability across a temperature range of 30 to 50℃. The underwater 

superoleophobicity of the printed polymer membranes was analysed by the oil droplet 

underwater contact angle measurement in the inverted sessile drop experimental setup. CM-

2 B specimen (bottom surface of coated membrane specimen fabricated from 70 W of laser 

power and 0.12 mm of layer thickness) showed the best wettability performance with the 

highest water contact angle (WCA) value of 150.65°, achieving superhydrophobic 

behaviour. This was due to the specimen having the highest surface roughness and porosity 

values of 11.14 µm and 22.37 %, respectively. The increase in surface roughness increases 

the WCA on the membrane. For the tensile properties, the NCM-3 specimen (non-coated 

membrane specimen fabricated from 80 W of laser power and 0.06 mm of layer thickness) 

obtained the highest values (42.40 MPa) due to higher energy density (ED) transmitted 

during the printing process influenced by the printing parameter setting. However, the 

highest oil-water separation efficiency was recorded by CM-2 B specimen with 99.5%. For 

the underwater oil contact angle (OCA), CM-2 B specimen recorded the highest OCA values 

(160.56°) at 30°C. Nevertheless, as the water temperatures rose to 40°C and 50°C, OCA 

values for CM-2 B specimen decreased from 155.75° to 153.66 °, a similar trend for all 

specimens.  The proposed underwater OCA model reveals that the temperature negatively 

affects OCA (-0.2959), while layer thickness has a strong positive influence (79.90). The 

ANOVA results also highlighted temperature and layer thickness as the most significant 

predictors for underwater OCA. From this study, it has been shown that printing parameters, 

surface modification and temperatures affect the performance of the membrane especially in 

oil-water separation process.
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KAJIAN TERHADAP SIFAT FIZIKAL, MEKANIKAL DAN KEBOLEHBASAHAN 

MEMBRAN POLIAMIDA-12 CETAKAN 3D  

ABSTRAK 

Membran polimer bercetak tiga dimensi (3D) sangat sesuai untuk pemisahan minyak-air 

yang dipacu graviti untuk pemulihan tumpahan minyak kerana pemisahan terpilih yang 

boleh dipercayai, kecekapan tinggi dan kebolehbasahan boleh tukar. Walau bagaimanapun, 

kebolehbasahan boleh tukar dalam airnya boleh menjadi satu cabaran kerana parameter 

pencetakan; sebarang perubahan permukaan akan mengubah suai kebolehbasahan 

membran bercetak, dipertingkatkan oleh pengaruh suhu air yang boleh menjejaskan 

kestabilan superoleofobik dalam air membran bercetak. Kajian ini bertujuan untuk 

menganalisis kesan parameter percetakan terhadap kebolehbasahan boleh tukar dalam air 

dalam suhu air yang agak tinggi untuk meningkatkan kebolehbasahan membran polimer 

bercetak. Untuk penambahbaikan hidrofobik permukaan, membran poliamida bercetak 

direndam dalam campuran jelaga/heksana lilin hidrofobik dan tertakluk kepada proses 

sonikasi. Parameter kebolehbasahan 'kering', morfologi, keliangan, kekasaran permukaan, 

dan sifat mekanikal membran telah dinilai; kesan parameter pencetakan 3D juga dinilai. 

Selain itu, kajian ini secara unik mengkaji kesan parameter pencetakan pada 

kebolehbasahan boleh tukar dalam air merentasi julat suhu 30 hingga 50 ℃. Keadaan 

superoleofobik bawah air membran polimer bercetak dianalisis oleh titisan minyak 

pengukuran sudut sentuhan bawah air dalam persediaan eksperimen titisan sesil terbalik. 

Spesimen CM-2 B (permukaan bawah spesimen membran bersalut yang direka daripada 

kuasa laser 70 W dan ketebalan lapisan 0.12 mm) menunjukkan prestasi kebolehbasahan 

terbaik dengan nilai sudut sentuhan air (WCA) tertinggi iaitu 150.65°, mencapai tingkah 

laku superhidrofobik. Ini disebabkan oleh spesimen yang mempunyai nilai kekasaran 

permukaan dan keliangan tertinggi masing-masing 11.14 µm dan 22.37 %. Peningkatan 

kekasaran permukaan meningkatkan WCA pada membran. Untuk sifat tegangan, spesimen 

NCM-3 (spesimen membran tidak bersalut yang direka daripada kuasa laser 80 W dan 

ketebalan lapisan 0.06 mm) memperoleh nilai tertinggi (42.40 MPa) disebabkan oleh 

ketumpatan tenaga (ED) yang lebih tinggi yang dihantar semasa proses pencetakan 

dipengaruhi oleh tetapan parameter percetakan. Walau bagaimanapun, kecekapan 

pemisahan minyak-air tertinggi dicatatkan oleh spesimen CM-2 B dengan 99.5%. Untuk 

sudut sentuhan minyak bawah air (OCA), spesimen CM-2 B merekodkan nilai OCA tertinggi 

(160.56°) pada 30°C. Namun begitu, apabila suhu air meningkat kepada 40°C dan 50°C, 

nilai OCA untuk spesimen CM-2 B menurun daripada 155.75° kepada 153.66°, arah aliran 

yang sama untuk semua spesimen. Model OCA bawah air yang dicadangkan mendedahkan 

bahawa suhu memberi kesan negatif kepada OCA (-0.2959), manakala ketebalan lapisan 

mempunyai pengaruh positif yang kuat (79.90). Keputusan ANOVA juga menyerlahkan suhu 

dan ketebalan lapisan sebagai peramal yang paling penting untuk OCA bawah air. Daripada 

kajian ini, telah menunjukkan bahawa parameter cetakan, pengubahsuaian permukaan dan 

suhu mempengaruhi prestasi membran terutamanya dalam proses pengasingan minyak-air.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

 Oil spills pose a serious threat to the environment, as it can cause ecological damage. 

In the previous years, seven oil spills had taken place in Asia as reported by Oil Tanker Spill 

Statistics 2022 (ITOPF, 2023) which two were categorised as large oil spills, that resulted in 

more than 700 tonnes of oil dumped into the sea. One of the incidents involved the oil ship 

MT Princess Empress that sunk in February 2023 at the Philippines' Verde Island Passage, 

where a substantial amount of oil was discharged into the sea as shown in Figure 1.1. The 

spill had a catastrophic effect on fisheries, tourism and the standard of living for coastal 

populations, destroying coral reefs, mangroves and marine life. Fishing prohibitions and 

contaminated waters hampered the local economy and residents experienced health hazards 

such as respiratory problems and skin rashes.  

Oil-water mixes comprise non-miscible and emulsified mixtures in the form of 

stable-state microoil-water droplets, making oil-water separation challenging. The 

emulsified oil in water is stable due to the low interfacial tension between the disperse (oil) 

and the continuous (water) phase (Barambu et al., 2021). Therefore, breaking stable oil-in-

water emulsions is critical for ensuring high separation efficiency for emulsified oil-in-water 

mixtures.  
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Figure 1.1: Oil spill at Philippines' Verde Island Passage (Board. J., 2023) 

 

 Membrane separation has received a lot of attention in recent years compared to other 

traditional approaches such as gravity separation, hydrocyclone separation and 

sedimentation due to its high effectiveness for oil-water separation (Thiam et al., 2022). 

Nowadays, porous materials have been developed for oil-water separation, including mesh-

based materials (Gao et al., 2013; Zhang et al., 2019), sponge-based materials (Xia et al., 

2018; Kong et al., 2021), foam-based materials (Li et al., 2016; Hailan et al., 2021) and 

membranes (Rana et al., 2010; Yuan et al., 2017a, Yuan et al., 2017b, 2020). For over a 

decade, membrane technology has been used for oil spill remediation and oily wastewater 

treatment due to its high selectivity, stability and economical friendly (Thiam et al., 2022). 

Almost all types of polymer membranes from rigid microfiltration to flexible reverse 

osmosis membranes have been fabricated for academic and commercial purposes. 

Membrane fabrication can be categorised into conventional and three-dimensional 

(3D) printing methods. 3D printing is one of the methods to develop structurally viable and 

impermeable membranes using polymer materials such as polyamide powders to utilise their 
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good mechanical properties. To fully benefit from membrane technology and its 

applications, the manufacturing process is important since it has a significant impact on both 

performance and cost (Thiam et al., 2022). The emerging technology of Selective Laser 

Sintering (SLS) 3D printing has attracted significant interest in both industry and academic 

researchers due to its capability of fabricating parts which implements a layer-by-layer 

fabrication technique without any support.  

Surface wettability of a membrane is crucial to the separation efficiency of oil-water 

mixtures. Generally, wetting refers to a liquid's ability to retain contact with a solid surface 

due to intermolecular interactions. The contact angle of a liquid on a solid surface in the 

presence of another fluid such as oil, water and chemical liquids is widely used to 

characterize the condition of wetting. For effective oil removal, membranes must be 

hydrophobic and superoleophilic, allowing the oil to pass through the membrane while 

repelling water. However, Yuan et al., (2020) discovered 3D printed polymer membranes 

provide switchable wettability with hydrophobic and superoleophilic properties in the 

atmosphere but has the ability to switch into underwater superoleophobic properties when 

wetted with water; this behaviour allows these printed membranes to be efficiently utilised 

in oil spill remediation as shown in Figure 1.2. 




