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ABSTRACT

Three dimensional (3D) printed polymer membrane is highly feasible for gravity-driven, oil-
water separation for oil spill remediation due to its reliable selective separations, high
efficiency and switchable wettability. However, its underwater switchable wettability can be
a challenge due to printing parameters; any surface alteration will modify the printed
membrane wettability, enhanced by the influence of water temperature which can destabilize
underwater superoleophobicity of the printed membrane. This study aimed to analyse the
printing parameters’ effect on underwater switchable wettability in elevated water
temperatures to improve the wettability of printed polymer membranes. For surface
hydrophobicity improvement, printed polyamide membranes were immersed in a
hydrophobic-candle soot/hexane mixture and subjected to sonication process. The
parameters of ‘dry’ wettability, morphology, porosity, surface roughness and mechanical
properties of the membranes were evaluated; the 3D printing parameters effect was also
assessed. Moreover, this study uniquely examines the impact of printing parameters on
underwater switchable wettability across a temperature range of 30 to 50°C. The underwater
superoleophobicity of the printed polymer membranes was analysed by the oil droplet
underwater contact angle measurement in the inverted sessile drop experimental setup. CM-
2 B specimen (bottom surface of coated membrane specimen fabricated from 70 W of laser
power and 0.12 mm of layer thickness) showed the best wettability performance with the
highest water contact angle (WCA) value of 150.65° achieving superhydrophobic
behaviour. This was due to the specimen having the highest surface roughness and porosity
values of 11.14 um and 22.37 %, respectively. The increase in surface roughness increases
the WCA on the membrane. For the tensile properties, the NCM-3 specimen (non-coated
membrane specimen fabricated from 80 W of laser power and 0.06 mm of layer thickness)
obtained the highest values (42.40 MPa) due to higher energy density (ED) transmitted
during the printing process influenced by the printing parameter setting. However, the
highest oil-water separation efficiency was recorded by CM-2 B specimen with 99.5%. For
the underwater oil contact angle (OCA), CM-2 B specimen recorded the highest OCA values
(160.56°) at 30°C. Nevertheless, as the water temperatures rose to 40°C and 50°C, OCA
values for CM-2 B specimen decreased from 155.75° to 153.66 °, a similar trend for all
specimens. The proposed underwater OCA model reveals that the temperature negatively
affects OCA (-0.2959), while layer thickness has a strong positive influence (79.90). The
ANOVA results also highlighted temperature and layer thickness as the most significant
predictors for underwater OCA. From this study, it has been shown that printing parameters,
surface modification and temperatures affect the performance of the membrane especially in
oil-water separation process.



KAJIAN TERHADAP SIFAT FIZIKAL, MEKANIKAL DAN KEBOLEHBASAHAN
MEMBRAN POLIAMIDA-12 CETAKAN 3D

ABSTRAK

Membran polimer bercetak tiga dimensi (3D) sangat sesuai untuk pemisahan minyak-air
vang dipacu graviti untuk pemulihan tumpahan minyak kerana pemisahan terpilih yang
boleh dipercayai, kecekapan tinggi dan kebolehbasahan boleh tukar. Walau bagaimanapun,
kebolehbasahan boleh tukar dalam airnya boleh menjadi satu cabaran kerana parameter
pencetakan,; sebarang perubahan permukaan akan mengubah suai kebolehbasahan
membran bercetak, dipertingkatkan oleh pengaruh suhu air yang boleh menjejaskan
kestabilan superoleofobik dalam air membran bercetak. Kajian ini bertujuan untuk
menganalisis kesan parameter percetakan terhadap kebolehbasahan boleh tukar dalam air
dalam suhu air yang agak tinggi untuk meningkatkan kebolehbasahan membran polimer
bercetak. Untuk penambahbaikan hidrofobik permukaan, membran poliamida bercetak
direndam dalam campuran jelaga/heksana lilin hidrofobik dan tertakluk kepada proses
sonikasi. Parameter kebolehbasahan 'kering', morfologi, keliangan, kekasaran permukaan,
dan sifat mekanikal membran telah dinilai; kesan parameter pencetakan 3D juga dinilai.
Selain itu, kajian ini secara unik mengkaji kesan parameter pencetakan pada
kebolehbasahan boleh tukar dalam air merentasi julat suhu 30 hingga 50 °C. Keadaan
superoleofobik bawah air membran polimer bercetak dianalisis oleh titisan minyak
pengukuran sudut sentuhan bawah air dalam persediaan eksperimen titisan sesil terbalik.
Spesimen CM-2 B (permukaan bawah spesimen membran bersalut yang direka daripada
kuasa laser 70 W dan ketebalan lapisan 0.12 mm) menunjukkan prestasi kebolehbasahan
terbaik dengan nilai sudut sentuhan air (WCA) tertinggi iaitu 150.65°, mencapai tingkah
laku superhidrofobik. Ini disebabkan oleh spesimen yang mempunyai nilai kekasaran
permukaan dan keliangan tertinggi masing-masing 11.14 um dan 22.37 %. Peningkatan
kekasaran permukaan meningkatkan WCA pada membran. Untuk sifat tegangan, spesimen
NCM-3 (spesimen membran tidak bersalut yang direka daripada kuasa laser 80 W dan
ketebalan lapisan 0.06 mm) memperoleh nilai tertinggi (42.40 MPa) disebabkan oleh
ketumpatan tenaga (ED) yang lebih tinggi yang dihantar semasa proses pencetakan
dipengaruhi oleh tetapan parameter percetakan. Walau bagaimanapun, kecekapan
pemisahan minyak-air tertinggi dicatatkan oleh spesimen CM-2 B dengan 99.5%. Untuk
sudut sentuhan minyak bawah air (OCA), spesimen CM-2 B merekodkan nilai OCA tertinggi
(160.56°) pada 30°C. Namun begitu, apabila suhu air meningkat kepada 40°C dan 50°C,
nilai OCA untuk spesimen CM-2 B menurun daripada 155.75° kepada 153.66°, arah aliran
yvang sama untuk semua spesimen. Model OCA bawah air yang dicadangkan mendedahkan
bahawa suhu memberi kesan negatif kepada OCA (-0.2959), manakala ketebalan lapisan
mempunyai pengaruh positif yang kuat (79.90). Keputusan ANOVA juga menyerlahkan suhu
dan ketebalan lapisan sebagai peramal yang paling penting untuk OCA bawah air. Daripada
kajian ini, telah menunjukkan bahawa parameter cetakan, pengubahsuaian permukaan dan
suhu mempengaruhi prestasi membran terutamanya dalam proses pengasingan minyak-air.
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CHAPTER 1

INTRODUCTION

1.1 Background

Oil spills pose a serious threat to the environment, as it can cause ecological damage.
In the previous years, seven oil spills had taken place in Asia as reported by Oil Tanker Spill
Statistics 2022 (ITOPF, 2023) which two were categorised as large oil spills, that resulted in
more than 700 tonnes of oil dumped into the sea. One of the incidents involved the oil ship
MT Princess Empress that sunk in February 2023 at the Philippines' Verde Island Passage,
where a substantial amount of oil was discharged into the sea as shown in Figure 1.1. The
spill had a catastrophic effect on fisheries, tourism and the standard of living for coastal
populations, destroying coral reefs, mangroves and marine life. Fishing prohibitions and
contaminated waters hampered the local economy and residents experienced health hazards
such as respiratory problems and skin rashes.

Oil-water mixes comprise non-miscible and emulsified mixtures in the form of
stable-state microoil-water droplets, making oil-water separation challenging. The
emulsified oil in water is stable due to the low interfacial tension between the disperse (oil)
and the continuous (water) phase (Barambu et al., 2021). Therefore, breaking stable oil-in-
water emulsions is critical for ensuring high separation efficiency for emulsified oil-in-water

mixtures.



Figure 1.1: Oil spill at Philippines' Verde Island Passage (Board. J., 2023)

Membrane separation has received a lot of attention in recent years compared to other
traditional approaches such as gravity separation, hydrocyclone separation and
sedimentation due to its high effectiveness for oil-water separation (Thiam et al., 2022).
Nowadays, porous materials have been developed for oil-water separation, including mesh-
based materials (Gao et al., 2013; Zhang et al., 2019), sponge-based materials (Xia et al.,
2018; Kong et al., 2021), foam-based materials (Li et al., 2016; Hailan et al., 2021) and
membranes (Rana et al., 2010; Yuan et al., 2017a, Yuan et al., 2017b, 2020). For over a
decade, membrane technology has been used for oil spill remediation and oily wastewater
treatment due to its high selectivity, stability and economical friendly (Thiam et al., 2022).
Almost all types of polymer membranes from rigid microfiltration to flexible reverse

osmosis membranes have been fabricated for academic and commercial purposes.

Membrane fabrication can be categorised into conventional and three-dimensional
(3D) printing methods. 3D printing is one of the methods to develop structurally viable and

impermeable membranes using polymer materials such as polyamide powders to utilise their



good mechanical properties. To fully benefit from membrane technology and its
applications, the manufacturing process is important since it has a significant impact on both
performance and cost (Thiam et al., 2022). The emerging technology of Selective Laser
Sintering (SLS) 3D printing has attracted significant interest in both industry and academic
researchers due to its capability of fabricating parts which implements a layer-by-layer

fabrication technique without any support.

Surface wettability of a membrane is crucial to the separation efficiency of oil-water
mixtures. Generally, wetting refers to a liquid's ability to retain contact with a solid surface
due to intermolecular interactions. The contact angle of a liquid on a solid surface in the
presence of another fluid such as oil, water and chemical liquids is widely used to
characterize the condition of wetting. For effective oil removal, membranes must be
hydrophobic and superoleophilic, allowing the oil to pass through the membrane while
repelling water. However, Yuan et al., (2020) discovered 3D printed polymer membranes
provide switchable wettability with hydrophobic and superoleophilic properties in the
atmosphere but has the ability to switch into underwater superoleophobic properties when
wetted with water; this behaviour allows these printed membranes to be efficiently utilised

in oil spill remediation as shown in Figure 1.2.





