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ABSTRACT

Fused Deposition Modelling (FDM) three-dimensional (3D) printing is one of the most
broadly employed technique of small additive manufacturing (AM). FDM gained their
popularity rather than other AM processes due to its affordable cost and the simple working
principle. FDM can employ various of polymers including polylactic acid (PLA). Nowadays,
natural fibre (NF) had been chosen as enhancements in FDM filaments as it exhibit excellent
specific properties, low cost, and higher availability. However, the addition of NF modified
the properties of polymer, thus the printing process parameter need to be reset. FDM had
various of printing process parameter that impacted on the properties of the FDM printed
part. This study analyses the effect of printing process parameter setup on the mechanical
and physical properties of natural fibre reinforced polymer composite (NFRPC) which are
sugar palm fibre (SPF)/PLA and pineapple leaf fibre (PALF)/PLA. The optimum printing
process parameter for both SPF/PLA and PALF/PLA composites is determine based on the
results on the mechanical and physical properties. The correlation between the printing
process parameter with the mechanical and physical properties of the SPF/PLA and
PALF/PLA composites was also determine in this study. The fabrication of the composites
filament preparation started with the cutting, grinding, and sieving the fibres. Then, the
process continues with the mixing the fibres with the PLA. Finally, the composites were
crushed and extrude into the composite’s filament before the printing process of the samples
for the analysation of mechanical and physical properties. The design of experiment utilised
in this study was Taguchi method with three levels of printing process parameter which are
layer thickness, printing speed and infill density. The total samples printed for each
composites filament are 90 samples. The results shown that for SPF/PLA composites, the
optimum printing process parameter are 0.1 mm layer thickness, 25 mm/s printing speed and
100% infill density for the good mechanical and physical qualities. From all the parameters,
infill density has a positive linear correlation with all properties and layer thickness has a
negative linear correlation with all the properties. Thus, infill density concluded to have the
greater impact on the tensile properties than the other parameters with r between 0.703 and
0.773. As for PALF/PLA composites, the optimum printing process parameter are 0.1 mm
layer thickness, 25 mm/s printing speed and 100% infill density for the good mechanical and
physical attributes. From all the parameters, infill density also had a strong positive linear
correlation with tensile properties with value of r between 0.931 and 0.951 and layer
thickness had a positive linear correlation with the surface roughness with r value of 0.628.
Other parameters had a various correlation with the properties. Therefore, infill density is
concluded to have the greater impact on the mechanical properties and layer thickness have
the higher impact on the surface roughness properties. In conclusion, both SPF/PLA and
PALF/PLA had the same optimum printing process parameter for the good mechanical and
physical characteristics. In fact, each of the properties for both materials has a different
correlation with printing process parameters.



KEBOLEHCETAKAN FILAMEN KOMPOSIT ASID POLIKAKTIK DALAM
PEMODELAN PEMEMPATAN BERFUS MENGGUNAKAN ANALISIS STATISTIK

ABSTRAK

Percetakan tiga-dimensional (3D) Fused Deposition Modeling (FDM) ialah salah satu
teknik yang paling banyak digunakan dalam pembuatan bahan tambahan kecil (AM). FDM
meraih popularitinya berbanding proses AM lain kerana kos kemampuannya dan prinsip
kerja yang lebih mudah. FDM boleh menggunakan pelbagai polimer termasuk asid
polilaktik (PLA). Kini, gentian asli (NF) telah dipilih sebagai penambahbaikan dalam
filamen FDM kerana ia mempamerkan sifat khusus yang sangat baik, kos rendah dan
ketersediaan yang lebih tinggi. Walau bagaimanapun, penambahan NF telah mengubahsuai
sifat polimer, oleh itu parameter proses pencetakan perlu ditetapkan semula. FDM juga
mempunyai pelbagai parameter proses pencetakan yang memberi kesan kepada sifat
bahagian cetakan FDM. Kajian ini menganalisis kesan persediaan parameter proses
pencetakan terhadap sifat mekanikal dan fizikal komposit polimer bertetulang gentian
semulajadi (NFRPC) iaitu gentian kelapa sawit (SPF)/PLA dan gentian nanas (PALF)/PLA.
Parameter proses pencetakan optimum untuk kedua-dua komposit SPF/PLA dan PALF/PLA
ditentukan berdasarkan keputusan sifat mekanikal dan fizikal. Perkaitan antara parameter
proses pencetakan dengan sifat mekanikal dan fizikal komposit SPF/PLA dan PALF/PLA
juga ditentukan dalam kajian ini. Penyediaan komposit filamen dimulakan dengan
memotong, mengisar dan mengayak gentian. Kemudian, proses diteruskan dengan
mencampurkan gentian dengan PLA. Akhirnya, komposit dihancurkan dan diproses menjadi
filamen komposit sebelum proses percetakan sampel untuk analisis sifat mekanikal dan
fizikal. Reka bentuk eksperimen yang digunakan dalam kajian ini adalah kaedah Taguchi
dengan tiga peringkat parameter proses pencetakan iaitu ketebalan lapisan, kelajuan
cetakan dan ketumpatan isian. Jumlah sampel yang dicetak untuk setiap filamen komposit
ialah 90 sampel. Keputusan menunjukkan bahawa bagi komposit SPF/PLA, parameter
proses pencetakan optimum ialah ketebalan lapisan 0.1 mm, kelajuan cetakan 25 mm/s dan
ketumpatan isian 100% untuk kualiti mekanikal dan fizikal yang baik. Daripada semua
parameter, ketumpatan isian mempunyai korelasi linear positif dengan semua sifat dan
ketebalan lapisan mempunyai korelasi linear negatif dengan semua sifat. Oleh itu,
ketumpatan isian disimpulkan mempunyai kesan yang lebih besar ke atas sifat tegangan
berbanding parameter lain dengan r antara 0.703 dan 0.773. Bagi komposit PALF/PLA,
parameter proses pencetakan optimum ialah ketebalan lapisan 0.1 mm, kelajuan cetakan 25
mm/s dan ketumpatan isian 100% untuk sifat mekanikal dan fizikal yang baik. Daripada
kesemua parameter tersebut, ketumpatan infill juga mempunyai korelasi linear positif yang
kuat dengan sifat tegangan dengan nilai r antara 0.931 dan 0.951 dan ketebalan lapisan
mempunyai korelasi linear positif dengan kekasaran permukaan dengan nilai r 0.628.
Parameter lain mempunyai pelbagai korelasi dengan sifat. Oleh itu, ketumpatan isian
disimpulkan mempunyai kesan besar terhadap sifat mekanikal dan ketebalan lapisan
mempunyai kesan yang tinggi terhadap sifat kekasaran permukaan. Kesimpulannya, kedua-
dua SPF/PLA dan PALF/PLA mempunyai parameter proses pencetakan optimum yang sama
untuk ciri mekanikal dan fizikal yang baik. Malah, setiap sifat untuk kedua-dua bahan
mempunyai kolerasi yang berbeza dengan parameter proses percetakan.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

Three-dimensional (3D) printing is a frequently employed method in additive
manufacturing that involves producing an object layer by layer in three-dimensional form
out of material. Fused deposition modelling (FDM) is a material extrusion-based subclass of
additive manufacturing technology. FDM is one of the most widely used techniques for
small-scale additive manufacturing (AM) and being preferred than other 3D printing
technology because of its affordability and ease of handling that utilised polymers for
manufacturing final products, prototypes, or samples (Wojtyta et al., 2017; Rahim et al.,
2019; Deb et al., 2021). The printability of FDM refers to the filament's ability to be
continuously extruded and deposited via the heated nozzle to produce a part that is equivalent
to its computer-aided design (CAD) model. FDM working principle is printing layer by layer
of material from the filament with a diameter size of 1.75 mm. Common materials that are
also used in traditional processing technologies, like plastic, metal, sand, wax, and gyps, are
mostly used in AM. Rapid prototyping development is accompanied by worries about 3D
printing's environmental impact. Given the increasing popularity of this subject, researchers
are starting to pay more interest to the detrimental effects of waste and carbon footprints. In
order to further the concept of “eco-friendly” materials, biodegradable, recyclable, and
compostable materials have been developed (Danut Mazurchevici et al., 2020).

Nowadays, polylactic acid (PLA) is being used in additive manufacturing due to its

superior processing ability, bio-derived origin, and desirable mechanical characteristics. It



has been demonstrated that 3D printed composites' mechanical, thermal, and physical
characteristics are enhanced when PLA is reinforced with bio-derived materials (Muthe et
al., 2022). Recently, natural fibres (NF) have been integrated as reinforcement materials in
FDM filaments. A high-quality natural fibre-filled thermoplastic composite necessitates
thorough mixing of the biofiller with the polymeric matrix, like other additives such as
coupling and toughening agents (Mazzanti et al., 2019).

In general, natural fibre composites are categorised into three types of resources that
are minerals, plants, and animals. Out of these three types of natural fibres, plant-based fibres
are used mostly in product design purposes as reinforcement materials for polymer-based
goods since they are abundantly available and require minimal processing to be extracted
(Mastura et al., 2022). Human-made fibres produced by chemical reactions are known as
synthetic fibres, and they are further divided into organic and inorganic categories according
to their content. Some of the synthetic fibres utilised in structural applications are carbon,
glass, basalt, and aramid fibres (Ahmad et al., 2021). The substitution of synthetic and carbon
fibre with NF, which has been studied by numerous scientists and researchers, is one of the
options stated that would enhance the quality of the environment and the new product (Aida
etal., 2021).

The printability of PLA composite filament can be influenced by the presence of
NF since it can increase brittleness of the composites and lead to interior nozzle rupture.
Additionally, various printing process variables like temperature, layer thickness, infill
density, printing speed and others depend on the material and the wide range of NF properties
makes it challenging for FDM to determine the material's printability. The nozzle also works
as a melting compartment in where the thermoplastic is heated to an appropriate density to
be ejected (Ferretti et al., 2021). Process parameter optimisation is regarded as a significant

alternative to enhancing the quality of the finished components (Attoye et al., 2019). It has



been discovered that each of these variables affects the product's structural and mechanical
characteristics (Rouf et al., 2022).

A study states that the raster-to-raster air gap, building orientation, raster angle, layer
thickness, and infill percentage are the FDM printing process variables that are anticipated
to have the greatest influence on mechanical attributes. The study also discovered that the
tensile strength increased along with the infill density and the tensile characteristics are
greatly affected by the interaction between the nozzle temperature and the infill pattern
(Rouf et al., 2022). The way these variables interact is crucial while considering the
mechanical characteristics (Popescu et al., 2018).

The quality of the surface finish is vital for affordability and total prototype time
reduction as well as to enhanced functionality and attractiveness. One of the main drawbacks
of FDM s that, in comparison to other methods, the printed part's surface is
disproportionately rough since the AM process uses a layered manufacturing approach
(Alsoufi et al., 2017). A study on the physical properties of the FDM printed parts shows
that the morphological structure, quality and finishing of the surface are significantly
impacted by the printing parameters of infill density and layer thickness. Variability in layer
height and infill density caused changes in the FDM manufactured parts of surface roughness
(Sammaiah et al., 2020). Previous research also discovered that the thickness of the layer is
closely correlated with the surface roughness; as layer thickness rises, so does the surface
roughness (Shirmohammadi et al., 2021).

FDM has gained prominence not only due to its cost-effectiveness but also because
of its compatibility with a wide range of thermoplastic materials. Among these, PLA stands
out as the most widely used material in FDM owing to its ease of printing, low warping
tendency, and good dimensional accuracy. As a biodegradable polymer derived from

renewable resources such as corn starch or bamboo, PLA aligns well with sustainability



goals while still offering competitive mechanical properties for prototyping and functional
applications. However, despite its advantages, PLA exhibits limitations such as brittleness
and relatively low thermal resistance, which can restrict its use in load-bearing or high-
temperature environments. These shortcomings have encouraged research into reinforcing
PLA with natural fibres to enhance its mechanical strength, toughness, and thermal stability
while maintaining its biodegradability and printability within the FDM process.

Therefore, in this study, the effect on the mechanical and physical properties of the
sugar palm fibre (SPF) and pineapple leaf fibre (PALF) reinforced with PLA were being
analysed with different printing process parameter setup which are layer thickness, printing
speed and infill density. The mechanical properties included in this study are flexural and
tensile properties with physical properties which are surface roughness and surface
morphological. All the properties of SPF/PLA and PALF/PLA are analysed to finalise the
optimum printing process parameters in FDM 3D printing applications. Finally, the strength
of the correlation between the printing process parameter with the mechanical and physical
properties are also determine and being analysed in this study using Pearson Correlation

Coefficient.

1.2 Problem Statement

The FDM technology utilises the material extrusion concept, that involves melting
or softening materials to form multiple layers of material to create three-dimensional printed
items. The use of an extrusion machine to create the composite filament internally in natural
fibre polymer composites has brought environmentally safe materials to the attention of
researchers in the expanding field of study on FDM materials. Since the addition of fibres to
the polymer matrix modifies all characteristics of the polymer, the printing process

parameter needs to be reset (Wojtyta et al., 2017).



In addition, the fibres in polymers would make the materials more brittle and less
sturdy (Kamran et al., 2016). This means that instead of the filament being deposited, it
would probably break and melt inside the nozzle. In nature, the addition of fibres for
reinforcing causes the polymer's viscosity to rise, and an excessive amount of fibres may
impede the polymer's flow. The issues with the even dispersion of natural fibres in the matrix
are brought to light. For instance, a 3D printer's nozzle may experience non-homogenous
composite flow, this could cause uneven printing or blockage (Lee et al., 2021).

Figure 1.1 shows on the main issues that concerning of FDM 3D printing. The first
issue is the fabrication of the composite filaments. The variety properties and structure of
the fibres do give an impact towards the filament and impacted the printing process. The
suitable extrusion temperature and speed to fabricate the composites filament is important
in the determination of the strength and structure of the composites filament. Previous study
shows the variety of shape of fibres included wood, bamboo and cork had difference in their
structure and thus different strength of properties (Mazur et al., 2022). It is a crucial process
to ensure the diameter of the filament is 1.75 mm to avoid a blockage during the printing.

From Figure 1.1, the other concern in FDM 3D printing is the printing process
parameter including the nozzle and bed temperature, layer thickness, printing speed and infill
density. An appropriate printing setting is important to provide a good quality of printed
parts with better performance in mechanical and physical properties. Better mechanical
attributes and part quality can derive from selecting these parameters effectively, but weaker
mechanical strength and quality can emerge from choosing them erroneously. As a result,
process variable optimisation becomes essential. While process variables are optimised, 3D
printed goods with the desired properties can be manufactured (Alafaghani et al., 2017;

Jaisingh Sheoran et al., 2020).





