

**PERFORMANCE ANALYSIS OF PLA BASED HYBRID
FILAMENT COMPOSITES REINFORCED WITH SPF/WTR FOR
3D PRINTING**

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

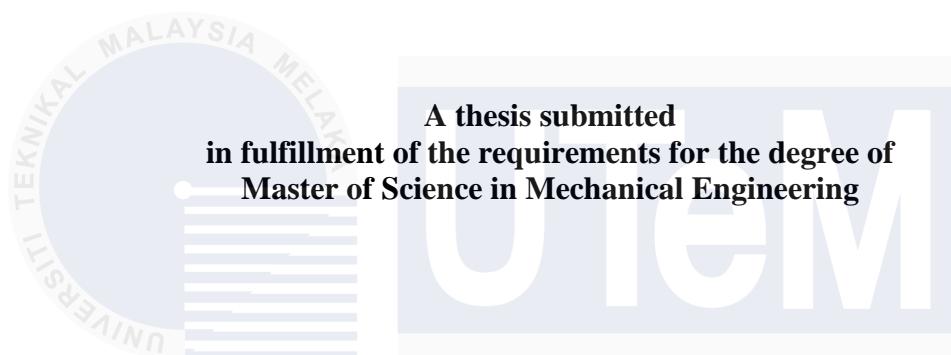
MASTER OF SCIENCE IN MECHANICAL ENGINEERING

2025

Faculty of Mechanical Technology and Engineering

**PERFORMANCE ANALYSIS OF PLA BASED HYBRID FILAMENT
COMPOSITES REINFORCED WITH SPF/WTR FOR 3D PRINTING**

Nur Batrisyia Binti Norhazlin


UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Master of Science in Mechanical Engineering

2025

**PERFORMANCE ANALYSIS OF PLA BASED HYBRID FILAMENT
COMPOSITES REINFORCED WITH SPF/WTR FOR 3D PRINTING**

NUR BATRISYIA BINTI NORHAZLIN

Faculty of Mechanical Technology and Engineering

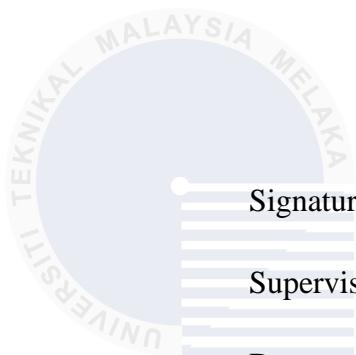
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Performance Analysis of PLA Based Hybrid Filament Composites Reinforced with SPF/WTR for 3D Printing.” is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :


Name : Nur Batrisyia Binti Norhazlin

Date : 27 July 2025

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering

Signature

:

Supervisor Name

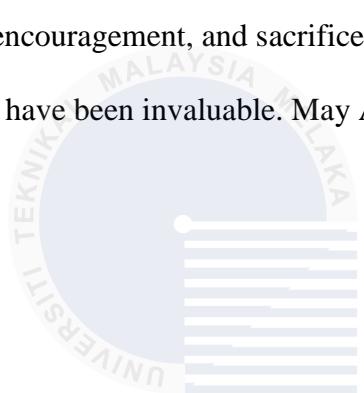
: Ts. Dr. Mohd Adrinata bin Shaharuzaman

Date

: 8 August 2025

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


DEDICATION

In the name of Allah, all praises are due to the Prophet Muhammad (S.A.W.).

Alhamdulillah, Haza Min Fadhlil Rabbi, I completed my research project and thesis writing.

I would like to express my deepest appreciation to my family for their unwavering support, encouragement, and sacrifices throughout this journey. Their guidance and belief in me have been invaluable. May Allah reward them with goodness and prosperity for their

kindness.

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Fused Deposition Modeling (FDM) is a widely used 3D printing method due to its cost-efficiency and material flexibility. Presently, synthetic and carbon fibers are the predominant reinforcements. However, concerns regarding their environmental impact have prompted a shift towards more sustainable options. To address these issues, this research has proposed utilizing natural and recycled materials as a composites filler. Polylactic acid (PLA), a biopolymer derived from renewable sources like corn starch and sugarcane, accounts for over 60% of bio-based plastics globally. While PLA is biodegradable and offers environmental benefits, it has limited thermal and mechanical strength, restricting its broader use in functional applications. This study aims to enhance the performance of PLA by incorporating sugar palm fiber (SPF) that has high stiffness and renewability and waste tyre rubber (WTR) that offers superior impact resistance, flexibility, and energy absorption, which compensates for the brittleness of PLA and rigidity of SPF as reinforcements to develop hybrid composite filaments suitable for 3D printing. The primary objectives of this research include investigating the effects of filler loading on the mechanical and thermal properties of the composites. Three filler ratios (75% SPF: 25% WTR, 50% SPF: 50% WTR, and 25% SPF: 75% WTR) were evaluated. The second objective of this research was to examine the effect of infill density on the mechanical properties, morphology and surface quality which is three infill density (50%, 70% and 100%) were evaluated. The composites were analyzed for mechanical testing including tensile, flexural and impact, thermal analysis in Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC), morphological analysis, and surface quality properties. For the first objective, the 75% SPF: 25% WTR composition showed the highest tensile 37.89 MPa and flexural strength 54.40 MPa, while the 25% SPF: 75% WTR combination recorded the greatest impact strength 4.30 kJ/m². Thermal analysis on the TGA show that 75% SPF: 25% WTR has a great thermal stability while on the DSC show that 25%SPF:75%WTR has better heat resistance and dimentianal stability. For the second objective results on the mechanical testing, in terms of tensile strength, the 75% SPF: 25% WTR composite with a 50% infill density demonstrated superior strength compared to other configurations. For flexural strength, the 75% SPF: 25% WTR composite with a 100% infill density exhibited the highest performance, while the 25% SPF: 75% WTR composite with 100% infill density achieved the best impact resistance. Morphological analysis indicated that composites with higher SPF content and increased infill density exhibited more uniform internal structures. Increased infill density, particularly at 100% at 75% SPF: 25% WTR, contributed to smoother surface finish and enhanced load distribution, which correlated with improved tensile strength. These results indicate that SPF/WTR reinforced PLA composites could promote sustainable alternatives for material development in additive manufacturing.

**ANALISIS PRESTASI KOMPOSIT FILAMEN HIBRID BERASASKAN PLA
BERTETULANG SPF/WTR UNTUK PERCETAKAN 3D**

ABSTRAK

Permodelan Pemendapan Bersatu (FDM) merupakan kaedah percetakan 3D yang meluas digunakan kerana kosnya yang efisien dan fleksibiliti bahan. Pada masa ini, gentian sintetik dan gentian karbon merupakan bahan penguat yang dominan. Namun begitu, keimbangan terhadap kesan alam sekitar telah mendorong kepada peralihan ke arah pilihan yang lebih mampan. Bagi menangani isu ini, kajian ini mencadangkan penggunaan bahan semula jadi dan bahan kitar semula sebagai pengisi dalam komposit. poly (asid laktik) (PLA), iaitu biopolimer yang berasal daripada sumber boleh diperbaharui seperti kanji jagung dan tebu, menyumbang lebih daripada 60% plastik berasaskan bio di seluruh dunia. Walaupun PLA boleh terbiodegradasi dan mesra alam, ia mempunyai kekuatan terma dan mekanikal yang terhad, sekali gus mengehadkan penggunaannya dalam aplikasi berfungsi. Kajian ini bertujuan untuk meningkatkan prestasi PLA dengan menggabungkan serat pokok enau (SPF) dan getah tayar terbuang (WTR) sebagai bahan penguat bagi menghasilkan filamen komposit hibrid yang sesuai untuk percetakan 3D. Objektif utama kajian ini adalah untuk menyiasat kesan peratusan gentian terhadap sifat mekanikal dan terma komposit. Tiga nisbah gentian yang berbeza telah dikaji, 75% SPF:25% WTR, 50% SPF:50% WTR, dan 25% SPF:75% WTR. Objektif kedua pula adalah untuk mengkaji kesan ketumpatan infill terhadap sifat mekanikal dengan menilai tiga tahap infill iaitu 50%, 70%, dan 100%. Komposit yang dihasilkan dianalisis melalui ujian mekanikal termasuk ujian tegangan, lenturan dan impak, serta analisis terma menggunakan analisis termogravometrik (TGA) dan kalori pengimbasan (DSC), di samping analisis morfologi dan kualiti permukaan. Bagi objektif pertama, komposisi 75% SPF:25% WTR menunjukkan kekuatan tegangan 37.89 MPa dan lenturan tertinggi 54.40 MPa, manakala kombinasi 25% SPF:75% WTR mencatatkan kekuatan impak tertinggi 4.30 kJ/m². Analisis TGA menunjukkan bahawa komposisi 75% SPF:25% WTR mempunyai kestabilan terma yang baik, manakala DSC menunjukkan bahawa 25% SPF:75% WTR mempunyai rintangan haba dan kestabilan dimensi yang lebih baik. Bagi objektif kedua, hasil ujian mekanikal menunjukkan bahawa untuk kekuatan tegangan, komposit 75% SPF:25% WTR dengan infill 50% memperlihatkan kekuatan yang lebih tinggi berbanding konfigurasi lain. Untuk kekuatan lenturan, komposit 75% SPF:25% WTR dengan infill 100% memberikan prestasi tertinggi, manakala 25% SPF:75% WTR dengan infill 100% menunjukkan rintangan impak terbaik. Analisis morfologi menunjukkan bahawa komposit dengan kandungan SPF yang tinggi dan infill yang lebih padat mempunyai struktur dalaman yang lebih seragam. Ketumpatan infill yang lebih tinggi, terutamanya pada 100% pada 75% SPF:25% WTR, menyumbang kepada permukaan yang lebih licin dan agihan beban yang lebih sekata, yang berkait rapat dengan peningkatan kekuatan tegangan. Hasil kajian ini menunjukkan bahawa komposit PLA bertetulang SPF/WTR berpotensi sebagai alternatif mampan dalam pembangunan bahan untuk teknologi pembuatan tambahan (additive manufacturing).

ACKNOWLEDGEMENT

First and foremost, I wish to express my heartfelt gratitude to Allah, the Almighty for all the blessings I have received throughout my study journey. I am thankful for the opportunity to complete my research and fulfill my academic tasks without any significant obstacles. I would like to extend my deepest appreciation to Dr. Nadlene Binti Razali for providing me with the opportunity to expand and enhance my knowledge during my two years of master's studies in Mechanical Engineering. Her guidance has been invaluable to my academic growth. A special acknowledgment is due to my supervisor, Ts. Dr. Mohd Adrinata bin Shaharuzaman, for his enthusiastic encouragement, steadfast support, and patient guidance throughout the various phases of my research project. I am also grateful to my family mama, papa and Iffat who have been my unwavering support system during this journey. Their encouragement has been a source of strength of mine. Additionally, I would like to thank the FTKM lecturers and staff, SPS staff, UPgrade committee, seniors, friends, and all the laboratory technicians at UTeM and UniKL Alor Gajah whose assistance and moral support have greatly contributed to my experience. Ultimately, my sincere thanks extend to everyone who has been involved in my Master Research journey, both directly and indirectly. May Allah reward all of you.

TABLE OF CONTENTS

	PAGES
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	i
LIST OF ABBREVIATIONS	iii
LIST OF SYMBOLS	v
LIST OF APPENDICES	vii
LIST OF PUBLICATIONS	viii
 CHAPTER	
 1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	3
1.3 Research Question	5
1.4 Research Objective	5
1.5 Scope of Research	6
1.6 Thesis Outline	7
 2 LITERATURE REVIEW	10
2.1 Introduction	10
2.2 Polylactic Acid (PLA) Polymer	12
2.3 Natural Fiber Reinforced PLA composites	14
2.3.1 Sugar Palm Fiber Composites	20
2.4 Natural Rubber Reinforced PLA Composites	24
2.4.1 Waste Tyre Rubber Composites	26
2.5 The Reinforcement of Hybrid Composites	33
2.6 Enhance Bonding between Fillers and Matrix	38
2.7 Potential of Hybrid Composites for Fused Deposition Modeling (FDM)	43
2.8 Additive Manufacturing 3D Printing	45
2.8.1 Principle of FDM	47
2.8.2 Hybrid material for FDM	49
2.8.3 Extrusion of Hybrid Filament	50
2.8.4 Printing Process Parameter (Infill Density)	52
2.9 Summary	53

3	METHODOLOGY	55
3.1	Introduction	55
3.2	Experimental Set-up	59
3.3	Material Preparation	59
3.3.1	Chemical Treatment	60
3.3.2	Composite Mixture and Extrusion Process	62
3.3.3	Printing Sample Using Fused Deposition Modelling Processing	64
3.4	Sample Characterization	67
3.4.1	Mechanical properties	67
3.4.2	Thermal Analysis Testing	72
3.4.3	Morphological Studies	74
3.4.4	Surface Quality Analysis	75
3.5	Summary	76
4	RESULTS AND DISCUSSION	77
4.1	Introduction	77
4.2	Results and Analysis on Effect of Filler Loading	78
4.2.1	Mehanical Analysis on Tensile Strength and Modulus	78
4.2.2	Mechanical Analysis on Flexural Strength and Modulus	81
4.2.3	Mechanical Analysis on Impact Resistance	85
4.2.4	Thermal Analysis on Thermogravimetric Analysis (TGA)	87
4.2.5	Thermal Analysis on Differential Scanning Calorimetry Analysis (DSC)	91
4.3	Results and Analysis on Effect of Infill Density	95
4.3.1	Mechanical Analysis on Tensile Strength	95
4.3.2	Mechanical Analysis on Flexural Strength	98
4.3.3	Mechanical Analysis on Impact Resistance	100
4.3.4	Morphological Analysis	101
4.3.5	Surface Quality	106
4.4	Summary	112
5	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	114
5.1	Conclusion	114
5.2	Recommendations	118
5.3	Contribution	119
REFERENCES		121
APPENDICES		138

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1	Scope and objective of research	7
Table 2.1	Chemical composition of selected common natural fibers	18
Table 2.2	Mechanical properties of PLA reinforced with natural fiber	19
Table 2.3	Chemical composition of sugar palm fiber	22
Table 2.4	Mechanical properties of sugar palm fiber	22
Table 2.5	Type of recycling and rubber sizes	29
Table 2.6	Typical composition of waste tyre rubber (Islam et al. 2022)	29
Table 2.7	Mechanical properties of tyre rubber	31
Table 2.8	Studies of hybrid composites	34
Table 2.9	Studies of alkaline treatment	41
Table 2.10	Studies of silane treatment	43
Table 2.11	Type of additive manufacturing and material use	46
Table 3.1	Solution for silane treatment	61
Table 3.2	Overall procedure for treatment process	62
Table 3.3	Structure of hybrid composites	64
Table 3.4	Heat profile in the extruder process	64
Table 3.5	Parameter of printing process	66
Table 4.1	Results of TGA thermal properties on hybrid composite	88
Table 4.2	Results of DSC thermal properties on hybrid composite	92
Table 4.3	3D profilometer with different infills density of 75% SPF: 25% WTR	108
Table 4.4	3D profilometer with different infills density of 50% SPF: 50% WTR	109
Table 4.5	3D profilometer with different infills density of 25% SPF: 75% WTR	109

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Biocomposite classification (Brenken et al., 2018)	11
Figure 2.2	Classification of natural fibers (Siakeng et al. 2019, Akil et al. 2011, Mwaikambo, 2006)	16
Figure 2.3	Schematic depiction of natural fiber cell (Paulraj et al., 2021)	17
Figure 2.4	Contribution of chemical constituents of natural fiber on selected properties (Lee et al., 2021)	18
Figure 2.5	Sugar palm tree	22
Figure 2.6	Latex from rubber tree	25
Figure 2.7	Composition of tyres (Svoboda et al., 2018)	28
Figure 2.8	Classification of rubber aggregates based on the sizes	30
Figure 2.9	Product by additive manufacturing	47
Figure 2.10	Nozzle of Fused deposition modeling	48
Figure 2.11	Twin screw extruder	51
Figure 3.1	Filament extrude process	56
Figure 3.2	Flow chart of the research	57
Figure 3.3	Processing stage	60
Figure 3.4	Overall process of filament extruder	64
Figure 3.5	Fused Deposition Modeling (FDM) 3D printer (Haghsefat, 2020)	65
Figure 3.6	Mechanical testing measurement (a) ASTM D638, (b) (ASTM D790), (c) (ASTM D256)	66
Figure 3.7	Samples for tensile test	67
Figure 3.8	Tensile test experiment	68
Figure 3.9	Samples for flexural test	69
Figure 3.10	Flexural test experiment	69
Figure 3.11	Samples for impact test	70
Figure 3.12	Impact test experiment	71
Figure 3.13	Machine for TGA analysis	72
Figure 3.14	Machine for DSC analysis	73
Figure 3.15	Machine for SEM test	74
Figure 3.16	Machine for 3D Profilometer	75

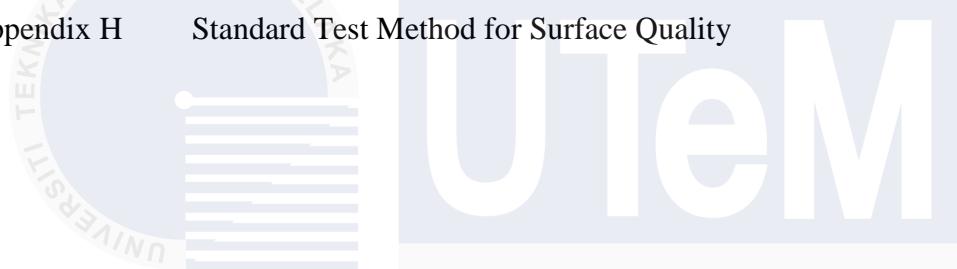
Figure 4.1	Results for tensile strength and modulus	78
Figure 4.2	Results for flexural strength and modulus	81
Figure 4.3	Results for impact strength	85
Figure 4.4	Results for TGA analysis on hybrid filament composites	87
Figure 4.5	Formation of char residue	90
Figure 4.6	Results of DSC analysis on hybrid filament composite	91
Figure 4.7	Tensile strength on different infill density of hybrid composites	95
Figure 4.8	Flexural strength on different infill density of hybrid composites	98
Figure 4.9	Impact strength on different infill density of hybrid composites	100
Figure 4.10	(a) 75% SPF: 25% WTR, (b) 50% SPF: 50% WTR, (c) 25% SPF: 75% WTR	102
Figure 4.11	Analyzer for printer surface of 50%, 70% and 100% infill density	106
Figure 4.12	Surface illustration of hybrid composite	111

LIST OF ABBREVIATIONS

<i>3D</i>	- 3 Dimension
<i>ABS</i>	- Acrylonitrile Butadienes
<i>AM</i>	- Additive Manufacturing
<i>ASTM</i>	- American Society For Testing And Materials
<i>CAD</i>	- Computer-Aided Design
<i>CF</i>	- Carbon Fiber
<i>DMA</i>	- Differential Mechanical Thermal Analysis
<i>DSC</i>	- Differential Scanning Calorimetry
<i>DTG</i>	- Difference Thermogravimetry
<i>FDM</i>	- Fused Deposition Modeling
<i>FFF</i>	- Fused Filament Fabrication
<i>FTIR</i>	- Fourier Transform Infrared Spectroscopy
<i>HFRPC</i>	- Hybrid Fiber Reinforced Polymer Composites
<i>LOM</i>	- Laminated Object Manufacturing
<i>NaOH</i>	- Sodium Hydroxide
<i>NFRPC</i>	- Natural Fiber Reinforced Polymer Composites
<i>NR</i>	- Natural Rubber
<i>OBJ</i>	- Objective
<i>OPBA</i>	- Oil Palm Boiler Ash
<i>PBS</i>	- Poly(Butylene Succinate)
<i>PDLA</i>	- Poly-D-Lactide
<i>PDLLA</i>	- Poly-DL-Lactide
<i>PHB</i>	- Poly(3-Hydroxybutyrate)
<i>PLA</i>	- Poly-Lactic Acid

<i>PLLA</i>	- Poly-L-Lactide
<i>PTA</i>	- Purified Terephthalic Acid
<i>RA</i>	- Average Roughness Value
<i>RF</i>	- Reinforced Fiber
<i>RZ</i>	- Average Maximum Height
<i>SBR</i>	- Styrene-Butadiene Rubber
<i>SDL</i>	- Selective Deposition Lamination
<i>SEM</i>	- Scanning Electron Microscope
<i>SLA</i>	- Stereolithography Apparatus
<i>SLS</i>	- Selective Laser Sintering
<i>SPF</i>	- Sugar Palm Fiber
<i>STL</i>	- Stereolithography
<i>Tc</i>	- Crystallization Temperature
<i>TGA</i>	- Thermogravimetric Analysis
<i>Tg</i>	- Glass Transition Temperature
<i>Tm</i>	- Melting Temperature
<i>TPU</i>	- Thermoplastic Polyurethane
<i>UV</i>	- Ultraviolet
<i>WTR</i>	- Waste Tyre Rubber

LIST OF SYMBOLS


$\%$	-	Percent
$^{\circ}C$	-	Degree Celsius
$wt\%$	-	Weight Percent
ε	-	Strain
σ	-	Strength
A	-	Area
b	-	Width
d	-	Depth
E	-	Elongation
F	-	Force
g	-	gram
g	-	Acceleration Gravity
GPa	-	Gigapascal
H	-	Height
J	-	Joules
kN	-	kiloNewton
kg	-	kilogram
kJ/m^2	-	kilojoules Per Square Meter
Kv	-	V-Notch Impact Energy
L	-	Length
m	-	Mass
m^2	-	Meter Square
mm	-	Millimetre
μm	-	Micrometer

<i>mm/s</i>	- Milimetre Per Second
<i>min</i>	- Minutes
<i>mg</i>	- milligram
<i>MPa</i>	- Megapascal
<i>P</i>	- Force
<i>Pa</i>	- Pascal
<i>RPM</i>	- Rotation Per Minute

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Copyright PLA/SPF/WTR SERU Eco-Filament Blend	138
Appendix B	Standard Test Method for Tensile Properties	139
Appendix C	Standard Test Method for Flexural Properties	140
Appendix D	Standard Test Method for Impact Properties	141
Appendix E	Standard Test Method for Thermogravimetry	142
Appendix F	Standard Test Method for Differential Scanning Calorimetry	143
Appendix G	Standard Test Method for Scanning Electron Microscopy	144
Appendix H	Standard Test Method for Surface Quality	145

جامعة تكنولوجيا ملاكا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Norhazlin, B., Shaharuzaman, M.A. and Razali, N., 2025. Characterization Of Pla-Based Hybrid Composites: Mechanical And Morphological Properties. *Malaysian Journal of Microscopy*, 21(1), pp.274-285.

Norhazlin, N.B., Razali, N., Shaharuzaman, M.A., Mustafa, Z., Fadzullah, S.H.S. and Rashid, B., 2025. The Effect of Fibre Loadings on the Mechanical and Thermal Properties of Sugar Palm/Waste Tyre Rubber Reinforced Polylactic Acid hybrid Composites via Fused Deposition Modelling. *Journal of Advanced Research Design*, 133(1), pp.44-59.

Norhazlin, B., Shaharuzaman, M. A., Razali, N., & Koinkar, P. (2025). Mechanical, Thermal and Surface Roughness Properties of PLA-Based Hybrid Composite Filament for Fused Deposition Modelling. *Journal of Advance Research Fluid Mechanic & Thermal Science*, 133(2), pp. 106–125.

Norhazlin, N. B., Razali, N., Shaharuzaman, M. A., & Koinkar, P. (2025) A review: Poly(lactic acid) Hybrid Filament For Fused Deposition Modeling. *Journal of Advanced Research in Fluid Mechanics and Thermal Sciences*, 134(2), pp. 171-195.

CHAPTER 1

INTRODUCTION

1.1 Background

The increasing awareness of the environmental impact of petroleum based materials has sparked significant concern in recent years. The extraction, processing, and combustion of fossil fuels contribute to greenhouse gas emissions, air pollution, and ecological degradation. Oil refineries are major sources of harmful emissions, including carbon dioxide and volatile organic compounds, which exacerbate climate change and pose health risks to surrounding communities. As a result, there is a pressing need to explore sustainable alternatives that reduce reliance on these materials and mitigate their harmful effects on the environment (Liu et al., 2019).

Composites are materials made from two or more constituent components that exhibit different physical or chemical properties (Bahl, 2020). They typically consist of a matrix and reinforcement (Knight et al., 2022). The matrix is the continuous phase that binds the composite together, providing shape and support, while the reinforcement is embedded within the matrix to enhance its mechanical properties. This combination allows composites to achieve superior strength, stiffness, and durability compared to their individual components.

Polylactic Acid (PLA) is a biodegradable thermoplastic polymer derived from renewable resources such as corn starch or sugarcane. One of the renewable and biodegradable base polymers in the polyester group is PLA (Mazzanti et al., 2020). As a

matrix material, PLA offers several advantages that make it particularly appealing for composite applications, but due to their disadvantages which are lower in thermal stability and strength, some applications might not be applicable (Manral and Bajpai, 2020). Its biodegradability ensures that PLA decomposes naturally at the end of its life cycle, reducing environmental impact compared to conventional petroleum based polymers. Being a thermoplastic, PLA can be easily processed using various techniques such as extrusion and injection molding, facilitating efficient production of composite materials. Moreover, PLA exhibits good mechanical performance, making it suitable for various applications when reinforced with natural fibers or other materials (Ilyas et al., 2022).

Natural fibers serve as an effective reinforcement in composite materials due to their favorable properties. Compared to synthetic fibers like glass fiber, natural fibers offer several advantages that enhance their appeal in sustainable material development. Other than that, the characteristics between natural fibers and synthetic fibers are quite similar, such as low density, high stiffness, and good mechanical properties (Bambach, 2020). They are renewable and biodegradable, contributing to lower environmental impact throughout their lifecycle. Additionally, the production of natural fibers generally requires less energy than synthetic fibers, resulting in reduced greenhouse gas emissions. Natural fibers are often more economical than glass fibers while providing competitive mechanical properties and being lightweight but tends to absorb moisture and exhibit poor interfacial bonding with hydrophobic PLA. Incorporating waste tyre rubber into hybrid composites with natural fibers presents an innovative solution for enhancing material performance while addressing waste management issues. According to Suriani et al. (2021), hybridisation in composite area is a method of the combination of different resources and processes with different properties for the improvement of existing material. Waste tyre rubber adds flexibility and

impact resistance to composites, improving their overall toughness (Islam et al., 2022). The recycling process of waste tyres can solve two problems which are efficiently reducing the number of tyres that are disposed of and making resources accessible (Zedler et al., 2022). The combination of natural fibers and rubber not only enhances mechanical properties but also promotes sustainability by recycling waste materials that would otherwise contribute to environmental pollution.

The use of polymer hybrid composites in environmentally friendly Fused Deposition Modelling (FDM) technology has gained traction among industries and researchers alike. FDM allows for the efficient production of complex geometries using thermoplastic materials. Acrylonitrile butadiene styrene (ABS) and (PLA) are popular because they are stable. The most frequent thermoplastic that had been produced in this technology is PLA (Jamadi et al., 2023). The implementation of hybrid composites in FDM filaments as a replacement for traditional fillers has attracted considerable interest from competitors and market platforms. This shift towards sustainable practices not only aligns with environmental goals but also opens new avenues for innovation in composite manufacturing.

1.2 Problem Statement

PLA is widely used in FDM due to its biodegradability and ease of processing. However, its inherent limitations such as low thermal stability, brittleness, and reduced impact strength restrict its application in load bearing or functional components (Mazzanti et al., 2020; Manral and Bajpai, 2020). To overcome these deficiencies, natural fibers and recycled materials have been explored as reinforcements. Sugar palm fiber (SPF), with good tensile strength and renewability, suffers from hydrophilicity, which can cause poor interfacial bonding with hydrophobic polymer matrices and lead to moisture absorption and

mechanical degradation (Atiqah et al., 2019). Waste tyre rubber (WTR), while beneficial in improving flexibility and impact resistance, presents challenges due to its poor dispersion, and weak interfacial adhesion in the polymer matrix (Islam et al., 2022). To reduce these limitations, surface treatment of SPF and WTR is often required to improve compatibility with the PLA matrix. In this study, treatment is applied as a preparation step to enhance filler matrix bonding, though the main objective is to investigate how different filler loadings and printing parameters affect composite performance. If the compatibility issues and mechanical limitations are not addressed, the resulting PLA composites may exhibit low strength, poor thermal resistance. Inadequate dispersion or interfacial bonding may cause stress concentrations, reducing durability of the printed parts.

Although hybridization in material has been proposed in recent studies, most focus on individual fillers or do not fully explore the synergy between SPF and WTR in a PLA matrix. Furthermore, there is limited research evaluating how different fiber loadings and FDM specific parameters such as infill density influence the composite's mechanical, thermal, and surface performance. This study aims to fill this gap by systematically evaluating the effect of green material SPF/WTR ratio and infill density on the performance of PLA hybrid composite filaments. By optimizing filler composition and printing parameters, this research supports the development of more durable, sustainable, and application ready hybrid composite materials for 3D printing.