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ABSTRACT

Streaming in oscillatory flow of the alternative green technology known as thermoacoustics
remains relatively less understood. The thermodynamic cycle in the system is driven by the
oscillatory flow of the acoustic waves, understanding the nature of streaming, particularly
within the porous structure of the system is crucial. Since the current study does not include
a heat exchanger to generate a temperature gradient, it cannot directly be used as a complete
thermoacoustic system. Instead, this design choice aligns with the primary aim of the study,
which was to investigate the flow dynamics and acoustic streaming within an oscillatory
flow field in a thermoacoustic system without thermal effect. This study was done using a
parallel-plate porous channel operating under standing-wave conditions at a quarter
wavelength. Both experimental and computational fluid dynamics (CFD) approaches were
used. The experimental data, including the velocity, pressure and wall displacement were
recorded under a resonance frequency of 23.6 Hz. The flow was maintained at room
temperature and atmospheric pressure, with drive ratios ranging from 0.64% to 3.01%. These
measurements were then incorporated into CFD simulations to provide deeper insight into
complex flow physics. The two-dimensional (2D) CFD model was solved for minimum,
medium and maximum flow conditions using the Shear Stress Transport (SST) k-
turbulence model. Comparisons and discussions were made based on the data from the
experiment, CFD and one-dimensional linear thermoacoustic theory. Results showed that
the discrepancies between experimental and numerical results were slightly larger, possibly
due to vibration effects during testing. To address this, a dynamic mesh was applied to
simulate wall movement. This adjustment results in a slightly improved correlation with
experimental data, especially for peak velocity at the downstream location. Further analysis
of vortex structures over 20 phases of a flow cycle was carried out. The results show that
under moving wall conditions, vortices shed further and extended longer into the open area,
with a 12.40% deviation from the non-moving wall case at high acoustic amplitudes. The
observation of flow streaming was made based on the progress of velocity profiles over time.
In addition, the CFD model was extended with the Ffowcs-Williams and Hawkings (FW-H)
acoustic model to analyse the sound pressure level (SPL) at three receivers positioned at the
inlet, mid-channel and outlet of the computational domain. The highest SPL was recorded
at the mid-channel, attributed to strong interactions between acoustic waves and solid
boundaries, with the acoustic source positioned at the inlet. A parametric study using helium
as the working fluid was also conducted to explore the effect of fluid properties on flow
behavior and streaming. The simulations were conducted under the same drive ratios as those
used for air. Results showed that Rayleigh streaming in helium is significantly weaker than
in air, with a reduction in streaming intensity of approximately 34.17%, while Schlichting
streaming appeared negligible. These findings were further strengthened by comparisons
with existing literature, reinforcing the validity of the proposed methodology. Overall, this
study provides new insights into nonlinear flow behavior in thermoacoustics. The findings
enhance predictive modelling of oscillatory flows in porous channels and support the design
of more efficient thermoacoustic systems for sustainable cooling, waste-heat recovery and
renewable energy conversion.



PENJURUSAN DALAM ALIRAN AYUNAN MELALUI SALURAN BERLIANG
DALAM TERMOAKUSTIK

ABSTRAK

Penjurusan dalam aliran ayunan bagi teknologi hijau alternatif termoakustik masih kurang
difahami. Sistem ini dipacu oleh aliran ayunan gelombang akustik, maka pemahaman
terhadap sifat penjurusan, khususnya berhampiran struktur berliang, amat penting untuk
memastikan prestasi optimum. Kajian ini tidak melibatkan penukar haba untuk menjana
kecerunan suhu, oleh itu ia bukan sistem termoakustik lengkap, sebaliknya menumpukan
pada penyelidikan dinamik aliran dan penjurusan akustik tanpa kesan haba. Kajian
dijalankan menggunakan saluran berliang plat selari yang beroperasi di bawah gelombang
pegun dengan konfigurasi suku panjang gelombang. Pendekatan eksperimen dan CFD
digunakan, di mana data halaju aliran, tekanan dan pergerakan dinding direkodkan pada
frekuensi resonan 23.6 Hz dalam keadaan suhu bilik dan tekanan atmosfera, dengan julat
nisbah pacuan 0.64%—3.01%. Data ini seterusnya digunakan dalam simulasi CFD untuk
memahami tingkah laku fizikal aliran yang kompleks. Model CFD dua dimensi (2D)
diselesaikan bagi keadaan aliran minimum, sederhana dan maksimum menggunakan model
pergolakan SST k-w. Perbandingan dibuat dengan data eksperimen dan teori linear satu
dimensi. Hasil menunjukkan terdapat sedikit perbezaan antara eksperimen dan simulasi
vang berkemungkinan disebabkan oleh kesan getaran. Bagi menangani isu ini, jejaring
dinamik digunakan untuk mensimulasikan pergerakan dinding, menghasilkan korelasi lebih
baik dengan data eksperimen, khususnya pada halaju puncak di lokasi hujung. Analisis
pusaran bagi 20 fasa kitaran aliran mendapati dinding bergerak menghasilkan pusaran
yvang memanjang 12.40% lebih jauh ke arah kawasan terbuka berbanding kes dinding statik
pada amplitud tinggi. Model CFD turut diperluas dengan model akustik Ffowcs-Williams
dan Hawkings (FW-H) untuk menganalisis tahap tekanan bunyi (SPL) pada penerima di
bahagian masuk, tengah dan keluar saluran. SPL tertinggi diperoleh di bahagian tengah
saluran, disebabkan interaksi kuat antara gelombang akustik dan dinding pepejal, dengan
sumber akustik terletak di bahagian masuk. Selain itu, kajian parametrik menggunakan
helium sebagai bendalir kerja dijalankan bagi menilai kesan sifat bendalir. Simulasi dengan
nisbah pacuan yang sama seperti udara menunjukkan penjurusan Rayleigh dalam helium
Jjauh lebih lemah, dengan pengurangan sekitar 34.17%, manakala penjurusan Schlichting
hampir tiada. Penemuan ini konsisten dengan kajian terdahulu, sekali gus mengesahkan
pendekatan kajian. Secara keseluruhan, kajian ini memberikan pandangan baharu
mengenai tingkah laku aliran bukan linear dalam termoakustik, meningkatkan pemodelan
ramalan aliran ayunan dalam saluran berliang serta menyokong pembangunan sistem
termoakustik yang lebih cekap untuk penyejukan mampan, pemulihan haba buangan dan
penukaran tenaga boleh diperbaharui.
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CHAPTER 1

INTRODUCTION

This chapter introduces a brief background of the study focusing on the streaming
phenomenon in oscillatory flow within thermoacoustic devices. The problem statement,

research objectives and scope of the study are also explained.

1.1 Background

Pollution and global warming threats should no longer be taken lightly. Addressing
these worldwide environmental issues is one of the most serious challenges for society in
the twenty-first century (Laine et al. 2023). The energy supply sector is primarily responsible
for the excessive use of fossil fuels, resulting in the release of significant amounts of
greenhouse gases. This emission further leads to the release of unused waste heat, worsening
the current global energy crisis and disrupting the fragile ecological balance (Chen et al.
2023). Given the worsening concern surrounding these matters, the world is seriously
implementing plans on strengthening green technologies and the use of renewable energy
sources as the means to address the ever-growing demands for energy worldwide. In recent
years, numerous renewable energy technologies have been proposed, offering the ability to
utilize low-grade heat and naturally replenish themselves at a rate that meets energy
demands.

With promising features, the development of green technologies, such as
thermoacoustics, shows great potential as a replacement for conventional refrigeration as

they use inert gases as their working fluid rather than refrigerants (Luo et al. 2023). This is
1



primarily owing to the excellent qualities of dependability and environmental friendliness,
which allow the inert gas to deliver worldwide energy services while leaving a tiny carbon
footprint (Bhatti et al. 2023). According to Timmer et al. (2018), the effective operation of
thermoacoustic devices necessitates a thorough comprehension in flow dynamics, transient
phenomena, and the conversion of acoustic waves into energy, as this expertise guarantees
the sustainability of thermoacoustic effects. Another key requirement for effective
thermoacoustic devices is reliance upon the oscillatory motion of the working fluid. In this
state, the compressible fluid moves back and forth through the porous structures, creating
thermodynamic cycles that generate energy based on thermoacoustic principles. Luo et al.
(2023) have determined that this characteristic of the flow is ideal for both the refrigeration
and the power production applications, as it facilitates the thermodynamic cycle for energy
conversion.

A standing-wave thermoacoustic system typically consists of a resonator tube, a
porous stack, an acoustic driver and two heat exchangers positioned at the hot and cold ends,
as shown in Figure 1.1. Kajurek and Rusowic (2021) mentioned that the acoustic driver
generates an acoustic wave that propagates through the gaseous phase, thereby facilitating
heat transfer, compression, and expansion processes upon its interaction with the solid
surface of the stack plates. This will eventually results in a temperature disparity between
the two ends of the stack. This is the reason the stack is referred to as the "core" of a
thermoacoustic system, as it is the location where all thermoacoustic processes, comprising
of the expansion, the compression and heat transfer, take place (Almukhtar Allafi et al.

2021). Another appealing feature of this simple alternative refrigeration system is the use of





