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ABSTRACT 

 

Streaming in oscillatory flow of the alternative green technology known as thermoacoustics 

remains relatively less understood. The thermodynamic cycle in the system is driven by the 

oscillatory flow of the acoustic waves, understanding the nature of streaming, particularly 

within the porous structure of the system is crucial. Since the current study does not include 

a heat exchanger to generate a temperature gradient, it cannot directly be used as a complete 

thermoacoustic system. Instead, this design choice aligns with the primary aim of the study, 

which was to investigate the flow dynamics and acoustic streaming within an oscillatory 

flow field in a thermoacoustic system without thermal effect. This study was done using a 

parallel-plate porous channel operating under standing-wave conditions at a quarter 

wavelength. Both experimental and computational fluid dynamics (CFD) approaches were 

used. The experimental data, including the velocity, pressure and wall displacement were 

recorded under a resonance frequency of 23.6 Hz. The flow was maintained at room 

temperature and atmospheric pressure, with drive ratios ranging from 0.64% to 3.01%. These 

measurements were then incorporated into CFD simulations to provide deeper insight into 

complex flow physics. The two-dimensional (2D) CFD model was solved for minimum, 

medium and maximum flow conditions using the Shear Stress Transport (SST) k-ω 

turbulence model. Comparisons and discussions were made based on the data from the 

experiment, CFD and one-dimensional linear thermoacoustic theory. Results showed that 

the discrepancies between experimental and numerical results were slightly larger, possibly 

due to vibration effects during testing. To address this, a dynamic mesh was applied to 

simulate wall movement. This adjustment results in a slightly improved correlation with 

experimental data, especially for peak velocity at the downstream location. Further analysis 

of vortex structures over 20 phases of a flow cycle was carried out. The results show that 

under moving wall conditions, vortices shed further and extended longer into the open area, 

with a 12.40% deviation from the non-moving wall case at high acoustic amplitudes. The 

observation of flow streaming was made based on the progress of velocity profiles over time. 

In addition, the CFD model was extended with the Ffowcs-Williams and Hawkings (FW-H) 

acoustic model to analyse the sound pressure level (SPL) at three receivers positioned at the 

inlet, mid-channel and outlet of the computational domain. The highest SPL was recorded 

at the mid-channel, attributed to strong interactions between acoustic waves and solid 

boundaries, with the acoustic source positioned at the inlet. A parametric study using helium 

as the working fluid was also conducted to explore the effect of fluid properties on flow 

behavior and streaming. The simulations were conducted under the same drive ratios as those 

used for air. Results showed that Rayleigh streaming in helium is significantly weaker than 

in air, with a reduction in streaming intensity of approximately 34.17%, while Schlichting 

streaming appeared negligible. These findings were further strengthened by comparisons 

with existing literature, reinforcing the validity of the proposed methodology. Overall, this 

study provides new insights into nonlinear flow behavior in thermoacoustics. The findings 

enhance predictive modelling of oscillatory flows in porous channels and support the design 

of more efficient thermoacoustic systems for sustainable cooling, waste-heat recovery and 

renewable energy conversion. 
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PENJURUSAN DALAM ALIRAN AYUNAN MELALUI SALURAN BERLIANG 

DALAM TERMOAKUSTIK 

 

 

ABSTRAK 

 

Penjurusan dalam aliran ayunan bagi teknologi hijau alternatif termoakustik masih kurang 

difahami. Sistem ini dipacu oleh aliran ayunan gelombang akustik, maka pemahaman 

terhadap sifat penjurusan, khususnya berhampiran struktur berliang, amat penting untuk 

memastikan prestasi optimum. Kajian ini tidak melibatkan penukar haba untuk menjana 

kecerunan suhu, oleh itu ia bukan sistem termoakustik lengkap, sebaliknya menumpukan 

pada penyelidikan dinamik aliran dan penjurusan akustik tanpa kesan haba. Kajian 

dijalankan menggunakan saluran berliang plat selari yang beroperasi di bawah gelombang 

pegun dengan konfigurasi suku panjang gelombang. Pendekatan eksperimen dan CFD 

digunakan, di mana data halaju aliran, tekanan dan pergerakan dinding direkodkan pada 

frekuensi resonan 23.6 Hz dalam keadaan suhu bilik dan tekanan atmosfera, dengan julat 

nisbah pacuan 0.64%–3.01%. Data ini seterusnya digunakan dalam simulasi CFD untuk 

memahami tingkah laku fizikal aliran yang kompleks. Model CFD dua dimensi (2D) 

diselesaikan bagi keadaan aliran minimum, sederhana dan maksimum menggunakan model 

pergolakan SST k-ω. Perbandingan dibuat dengan data eksperimen dan teori linear satu 

dimensi. Hasil menunjukkan terdapat sedikit perbezaan antara eksperimen dan simulasi 

yang berkemungkinan disebabkan oleh kesan getaran. Bagi menangani isu ini, jejaring 

dinamik digunakan untuk mensimulasikan pergerakan dinding, menghasilkan korelasi lebih 

baik dengan data eksperimen, khususnya pada halaju puncak di lokasi hujung. Analisis 

pusaran bagi 20 fasa kitaran aliran mendapati dinding bergerak menghasilkan pusaran 

yang memanjang 12.40% lebih jauh ke arah kawasan terbuka berbanding kes dinding statik 

pada amplitud tinggi. Model CFD turut diperluas dengan model akustik Ffowcs-Williams 

dan Hawkings (FW-H) untuk menganalisis tahap tekanan bunyi (SPL) pada penerima di 

bahagian masuk, tengah dan keluar saluran. SPL tertinggi diperoleh di bahagian tengah 

saluran, disebabkan interaksi kuat antara gelombang akustik dan dinding pepejal, dengan 

sumber akustik terletak di bahagian masuk. Selain itu, kajian parametrik menggunakan 

helium sebagai bendalir kerja dijalankan bagi menilai kesan sifat bendalir. Simulasi dengan 

nisbah pacuan yang sama seperti udara menunjukkan penjurusan Rayleigh dalam helium 

jauh lebih lemah, dengan pengurangan sekitar 34.17%, manakala penjurusan Schlichting 

hampir tiada. Penemuan ini konsisten dengan kajian terdahulu, sekali gus mengesahkan 

pendekatan kajian. Secara keseluruhan, kajian ini memberikan pandangan baharu 

mengenai tingkah laku aliran bukan linear dalam termoakustik, meningkatkan pemodelan 

ramalan aliran ayunan dalam saluran berliang serta menyokong pembangunan sistem 

termoakustik yang lebih cekap untuk penyejukan mampan, pemulihan haba buangan dan 

penukaran tenaga boleh diperbaharui. 
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CHAPTER 1 

INTRODUCTION 

This chapter introduces a brief background of the study focusing on the streaming 

phenomenon in oscillatory flow within thermoacoustic devices. The problem statement, 

research objectives and scope of the study are also explained. 

1.1 Background 

Pollution and global warming threats should no longer be taken lightly. Addressing 

these worldwide environmental issues is one of the most serious challenges for society in 

the twenty-first century (Laine et al. 2023). The energy supply sector is primarily responsible 

for the excessive use of fossil fuels, resulting in the release of significant amounts of 

greenhouse gases. This emission further leads to the release of unused waste heat, worsening 

the current global energy crisis and disrupting the fragile ecological balance (Chen et al. 

2023). Given the worsening concern surrounding these matters, the world is seriously 

implementing plans on strengthening green technologies and the use of renewable energy 

sources as the means to address the ever-growing demands for energy worldwide. In recent 

years, numerous renewable energy technologies have been proposed, offering the ability to 

utilize low-grade heat and naturally replenish themselves at a rate that meets energy 

demands. 

With promising features, the development of green technologies, such as 

thermoacoustics, shows great potential as a replacement for conventional refrigeration as 

they use inert gases as their working fluid rather than refrigerants (Luo et al. 2023). This is 



 

2 

primarily owing to the excellent qualities of dependability and environmental friendliness, 

which allow the inert gas to deliver worldwide energy services while leaving a tiny carbon 

footprint (Bhatti et al. 2023). According to Timmer et al. (2018), the effective operation of 

thermoacoustic devices necessitates a thorough comprehension in flow dynamics, transient 

phenomena, and the conversion of acoustic waves into energy, as this expertise guarantees 

the sustainability of thermoacoustic effects. Another key requirement for effective 

thermoacoustic devices is reliance upon the oscillatory motion of the working fluid. In this 

state, the compressible fluid moves back and forth through the porous structures, creating 

thermodynamic cycles that generate energy based on thermoacoustic principles. Luo et al. 

(2023) have determined that this characteristic of the flow is ideal for both the refrigeration 

and the power production applications, as it facilitates the thermodynamic cycle for energy 

conversion. 

A standing-wave thermoacoustic system typically consists of a resonator tube, a 

porous stack, an acoustic driver and two heat exchangers positioned at the hot and cold ends, 

as shown in Figure 1.1. Kajurek and Rusowic (2021) mentioned that the acoustic driver 

generates an acoustic wave that propagates through the gaseous phase, thereby facilitating 

heat transfer, compression, and expansion processes upon its interaction with the solid 

surface of the stack plates. This will eventually results in a temperature disparity between 

the two ends of the stack. This is the reason the stack is referred to as the "core" of a 

thermoacoustic system, as it is the location where all thermoacoustic processes, comprising 

of the expansion, the compression and heat transfer, take place (Almukhtar Allafi et al. 

2021). Another appealing feature of this simple alternative refrigeration system is the use of 




