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ABSTRACT

A piping system is a network of interconnected pipes designed to transport fluids such as
liquids, gases, or slurries from one location to another. This method is considered efficient
due to its ability to maintain fluid quality without significant loss of properties. The system
relies on various fittings and structural components for support, one of which is the pipe
saddle support. This component is commonly used to support horizontal steel pipes by
transferring the applied loads to adjacent structures and preventing direct contact between
the pipe and its base. Stress distribution in pipe saddle supports is often analysed using finite
element analysis (FEA). However, this method may yield inaccurate results if the boundary
conditions and loading assumptions do not represent actual conditions. Additionally, the
absence of experiment validation can lead to inaccurate results leading to problems in the
future. Although general standards such as ANSI, ASME, and BS offer guidelines for pipe
support systems, they often lack specific design provisions for pipe saddle supports. To
address this gap, an oil and gas company which is Petronas developed its own piping support
construction standard for large-diameter pipes ranging from 26 to 56 inches in nominal pipe
size. Nevertheless, a case was identified in which the actual pipe loading exceeded the
allowable limit defined by the standard, suggesting the need for further refinement. To
investigate this issue, experiment was conducted on a pipe saddle support subjected to
vertical loading. The sample of pipe saddle support is used 1.5 mm thickness. Additionally,
the setup featured a portal frame secured using an underground locking system, where a pipe
was loaded onto a pipe saddle support sample using a hydraulic system. Stress data were
obtained from strain gauges placed at eight points on the flange plate, while the applied load
was recorded using a 5-ton capacity load cell. The results indicated that, on average, the pipe
saddle support samples failed at an applied load of 16,670.3 N. These experiment results
were then used to validate a finite element model, incorporating boundary condition
configuration, weld connection modelling, and mesh sensitivity analysis. The boundary
condition setup was found to have the most significant effect, with the highest accuracy
achieved using an inward contact angle of 11° and a ratio contact angle (Rc.) of 0.83,
providing an 83.3% accuracy. Using this validated model, a correlation study was conducted
to compare pipe saddle supports with sliding, guide, and stopper attachment based on the
pipe support construction standard developed by Petronas. The quantitative study concluded
that higher pipe loads require thicker saddle plates, with sliding supports requiring the least
thickness and stopper supports requiring the most. To further validate the correlation, an
additional experiment was performed using a 4.5 mm plate pipe. With the same design and
boundary conditions, the FEA achieved an accuracy of 94.6%, demonstrating the suitability
of the modelling technique for industrial application. This research offers refined design
recommendations that can support fabricators in producing more valid pipe saddle supports
for future use.



KAJIAN KORELASI ANTARA KETEBALAN PLAT SOKONGAN PELANA PAIP DAN
BEBANAN PAIP

ABSTRAK

Sistem perpaipan merupakan rangkaian paip yang saling berhubung dan direka untuk
mengangkut bendalir seperti cecair, gas, atau buburan dari satu lokasi ke lokasi yang lain.
Kaedah ini dianggap cekap kerana keupayaannya mengekalkan kualiti bendalir tanpa
kehilangan sifat yang ketara. Sistem ini bergantung kepada pelbagai kelengkapan dan
komponen struktur untuk sokongan, antaranya sokongan pelana paip yang lazim digunakan
bagi menyokong paip keluli mendatar dengan memindahkan beban ke struktur bersebelahan
serta mengelakkan sentuhan langsung antara paip dan asasnya. Taburan tegasan dalam
sokongan pelana paip sering dianalisis menggunakan kaedah Analisis Unsur Terhingga
(FEA), namun keputusan yang diperoleh boleh menjadi kurang tepat sekiranya syarat
sempadan dan andaian beban tidak mewakili keadaan sebenar, terutamanya tanpa
pengesahan eksperimen. Walaupun piawaian umum seperti ANSI, ASME, dan BS
menyediakan garis panduan bagi sistem sokongan paip, ia tidak memberikan perincian
khusus untuk reka bentuk sokongan pelana paip. Bagi mengatasi kekurangan ini, Petronas
telah membangunkan piawaian pembinaan sokongan paip tersendiri bagi paip berdiameter
besar bersaiz nominal antara 26 hingga 56 inci. Namun, terdapat kes di mana beban sebenar
paip melebihi had yang ditetapkan oleh piawaian tersebut, menandakan keperluan
penambahbaikan. Bagi menyiasat isu ini, ujikaji dijalankan ke atas sokongan pelana paip
menggunakan sampel setebal 1.5 mm dengan beban menegak yang dikenakan melalui sistem
hidraulik pada rangka portal yang dikunci bawah tanah. Tegasan diukur menggunakan tolok
regangan pada lapan titik di plat bebibir, manakala beban direkod dengan sel beban
berkapasiti 5 tan. Keputusan menunjukkan kegagalan berlaku secara purata pada beban
16,670.3 N. Data eksperimen ini digunakan untuk mengesahkan model FEA melibatkan
konfigurasi syarat sempadan, pemodelan kimpalan, dan analisis sensitiviti jejaring.
Ketepatan tertinggi dicapai apabila sudut sentuhan ke dalam ialah 11° dan nisbah sudut
sentuhan (R.) ialah 0.83 dengan ketepatan 83.3%. Berdasarkan model yang disahkan,
kajian korelasi dijalankan untuk membandingkan sokongan pelana paip jenis gelongsor,
panduan, dan penyekat mengikut piawaian Petronas. Hasil kajian mendapati beban paip
yvang lebih tinggi memerlukan plat pelana lebih tebal, dengan sokongan gelongsor
memerlukan ketebalan paling rendah manakala sokongan penyekat memerlukan ketebalan
paling tinggi. Eksperimen tambahan dengan plat setebal 4.5 mm dijalankan untuk
pengesahan lanjut, dan dengan reka bentuk serta syarat sempadan yang sama, FEA
mencapai ketepatan 94.6%, membuktikan teknik pemodelan ini sesuai untuk aplikasi
industri. Kajian ini memberikan cadangan reka bentuk yang lebih terperinci bagi membantu
pengilang menghasilkan sokongan pelana paip yang lebih sahih untuk kegunaan pada masa
hadapan.
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