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ABSTRACT 

 

A piping system is a network of interconnected pipes designed to transport fluids such as 

liquids, gases, or slurries from one location to another. This method is considered efficient 

due to its ability to maintain fluid quality without significant loss of properties. The system 

relies on various fittings and structural components for support, one of which is the pipe 

saddle support. This component is commonly used to support horizontal steel pipes by 

transferring the applied loads to adjacent structures and preventing direct contact between 

the pipe and its base. Stress distribution in pipe saddle supports is often analysed using finite 

element analysis (FEA). However, this method may yield inaccurate results if the boundary 

conditions and loading assumptions do not represent actual conditions. Additionally, the 

absence of experiment validation can lead to inaccurate results leading to problems in the 

future. Although general standards such as ANSI, ASME, and BS offer guidelines for pipe 

support systems, they often lack specific design provisions for pipe saddle supports. To 

address this gap, an oil and gas company which is Petronas developed its own piping support 

construction standard for large-diameter pipes ranging from 26 to 56 inches in nominal pipe 

size. Nevertheless, a case was identified in which the actual pipe loading exceeded the 

allowable limit defined by the standard, suggesting the need for further refinement. To 

investigate this issue, experiment was conducted on a pipe saddle support subjected to 

vertical loading. The sample of pipe saddle support is used 1.5 mm thickness. Additionally, 

the setup featured a portal frame secured using an underground locking system, where a pipe 

was loaded onto a pipe saddle support sample using a hydraulic system. Stress data were 

obtained from strain gauges placed at eight points on the flange plate, while the applied load 

was recorded using a 5-ton capacity load cell. The results indicated that, on average, the pipe 

saddle support samples failed at an applied load of 16,670.3 N. These experiment results 

were then used to validate a finite element model, incorporating boundary condition 

configuration, weld connection modelling, and mesh sensitivity analysis. The boundary 

condition setup was found to have the most significant effect, with the highest accuracy 

achieved using an inward contact angle of 11° and a ratio contact angle (Rca) of 0.83, 

providing an 83.3% accuracy. Using this validated model, a correlation study was conducted 

to compare pipe saddle supports with sliding, guide, and stopper attachment based on the 

pipe support construction standard developed by Petronas. The quantitative study concluded 

that higher pipe loads require thicker saddle plates, with sliding supports requiring the least 

thickness and stopper supports requiring the most. To further validate the correlation, an 

additional experiment was performed using a 4.5 mm plate pipe. With the same design and 

boundary conditions, the FEA achieved an accuracy of 94.6%, demonstrating the suitability 

of the modelling technique for industrial application. This research offers refined design 

recommendations that can support fabricators in producing more valid pipe saddle supports 

for future use. 
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KAJIAN KORELASI ANTARA KETEBALAN PLAT SOKONGAN PELANA PAIP DAN 

BEBANAN PAIP 

 

ABSTRAK 

 

Sistem perpaipan merupakan rangkaian paip yang saling berhubung dan direka untuk 

mengangkut bendalir seperti cecair, gas, atau buburan dari satu lokasi ke lokasi yang lain. 

Kaedah ini dianggap cekap kerana keupayaannya mengekalkan kualiti bendalir tanpa 

kehilangan sifat yang ketara. Sistem ini bergantung kepada pelbagai kelengkapan dan 

komponen struktur untuk sokongan, antaranya sokongan pelana paip yang lazim digunakan 

bagi menyokong paip keluli mendatar dengan memindahkan beban ke struktur bersebelahan 

serta mengelakkan sentuhan langsung antara paip dan asasnya. Taburan tegasan dalam 

sokongan pelana paip sering dianalisis menggunakan kaedah Analisis Unsur Terhingga 

(FEA), namun keputusan yang diperoleh boleh menjadi kurang tepat sekiranya syarat 

sempadan dan andaian beban tidak mewakili keadaan sebenar, terutamanya tanpa 

pengesahan eksperimen. Walaupun piawaian umum seperti ANSI, ASME, dan BS 

menyediakan garis panduan bagi sistem sokongan paip, ia tidak memberikan perincian 

khusus untuk reka bentuk sokongan pelana paip. Bagi mengatasi kekurangan ini, Petronas 

telah membangunkan piawaian pembinaan sokongan paip tersendiri bagi paip berdiameter 

besar bersaiz nominal antara 26 hingga 56 inci. Namun, terdapat kes di mana beban sebenar 

paip melebihi had yang ditetapkan oleh piawaian tersebut, menandakan keperluan 

penambahbaikan. Bagi menyiasat isu ini, ujikaji dijalankan ke atas sokongan pelana paip 

menggunakan sampel setebal 1.5 mm dengan beban menegak yang dikenakan melalui sistem 

hidraulik pada rangka portal yang dikunci bawah tanah. Tegasan diukur menggunakan tolok 

regangan pada lapan titik di plat bebibir, manakala beban direkod dengan sel beban 

berkapasiti 5 tan. Keputusan menunjukkan kegagalan berlaku secara purata pada beban 

16,670.3 N. Data eksperimen ini digunakan untuk mengesahkan model FEA melibatkan 

konfigurasi syarat sempadan, pemodelan kimpalan, dan analisis sensitiviti jejaring. 

Ketepatan tertinggi dicapai apabila sudut sentuhan ke dalam ialah 11° dan nisbah sudut 

sentuhan (Rca) ialah 0.83 dengan ketepatan 83.3%. Berdasarkan model yang disahkan, 

kajian korelasi dijalankan untuk membandingkan sokongan pelana paip jenis gelongsor, 

panduan, dan penyekat mengikut piawaian Petronas. Hasil kajian mendapati beban paip 

yang lebih tinggi memerlukan plat pelana lebih tebal, dengan sokongan gelongsor 

memerlukan ketebalan paling rendah manakala sokongan penyekat memerlukan ketebalan 

paling tinggi. Eksperimen tambahan dengan plat setebal 4.5 mm dijalankan untuk 

pengesahan lanjut, dan dengan reka bentuk serta syarat sempadan yang sama, FEA 

mencapai ketepatan 94.6%, membuktikan teknik pemodelan ini sesuai untuk aplikasi 

industri. Kajian ini memberikan cadangan reka bentuk yang lebih terperinci bagi membantu 

pengilang menghasilkan sokongan pelana paip yang lebih sahih untuk kegunaan pada masa 

hadapan. 
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