



اویورسیتی تکنیک ملیسا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

## CORRELATION STUDY BETWEEN PLATE THICKNESS OF PIPE SADDLE SUPPORT AND PIPE LOADING

اویورسیتی تکنیک ملیسا ملاک

MUHAMMAD ARIF RAYHAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

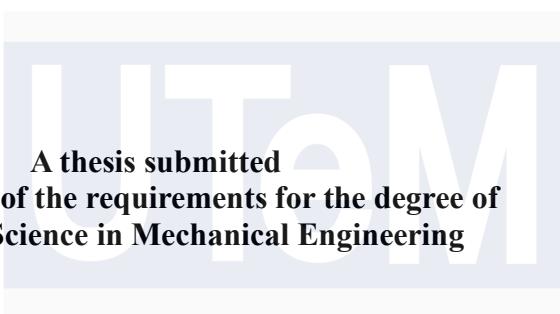
2025



**Faculty of Mechanical Technology and Engineering**

**CORRELATION STUDY BETWEEN PLATE THICKNESS  
OF PIPE SADDLE SUPPORT AND PIPE LOADING**

Muhammad Arif Rayhan


UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**Master of Science in Mechanincal Engineering**

**2025**

**CORRELATION STUDY BETWEEN PLATE THICKNESS OF PIPE SADDLE  
SUPPORT AND PIPE LOADING**

**MUHAMMAD ARIF RAYHAN**



جامعة تكنولوجيا ملاكا

**UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

**Faculty of Mechanical Technology and Engineering**

**UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

**2025**

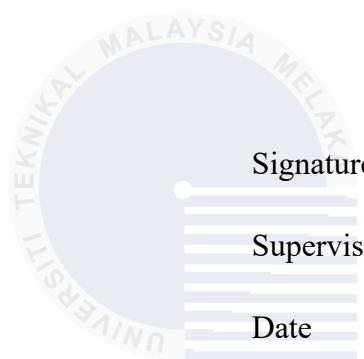
## DECLARATION

I declare that this thesis entitled “Correlation Study Between Plate Thickness Of Pipe Saddle Support and Pipe Loading“ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.



Signature :

Name : Muhammad Arif Rayhan


Date : 21/10/2025

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

## APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Mechanical Engineering



Signature

Supervisor Name : Assoc. Prof Ir. Dr. Mohd Shukri Bin Yob

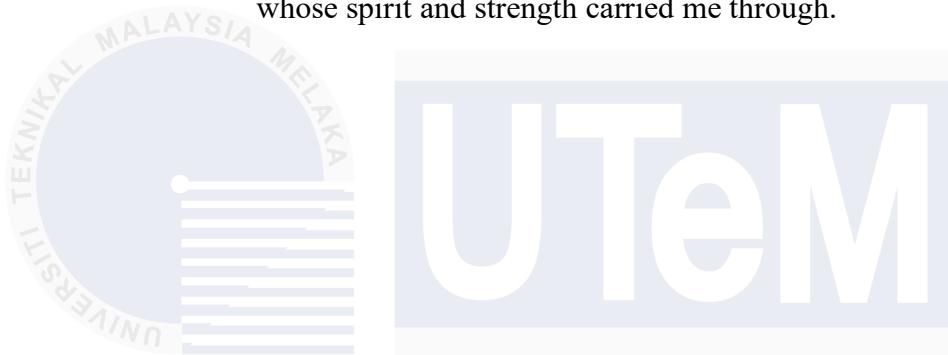
Date

: 21/10/2025



جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


## DEDICATION

To my strongest sister, Chintiyana Rachmaditasari, whose steady support, both emotionally and materially, has been a pillar throughout this journey.

To my beloved mother, Dian Indrasari, who encouraged me every step of the way.

To my sisters, Nafizta Rizcarachmakurnia and Najwa Nazillah, who have always been the ones I turn to when I need to share a story.

To my father, Kotot Rachmana, who never had the chance to witness this moment, but whose spirit and strength carried me through.



---

جامعة ملaka التقنية

---

## ABSTRACT

A piping system is a network of interconnected pipes designed to transport fluids such as liquids, gases, or slurries from one location to another. This method is considered efficient due to its ability to maintain fluid quality without significant loss of properties. The system relies on various fittings and structural components for support, one of which is the pipe saddle support. This component is commonly used to support horizontal steel pipes by transferring the applied loads to adjacent structures and preventing direct contact between the pipe and its base. Stress distribution in pipe saddle supports is often analysed using finite element analysis (FEA). However, this method may yield inaccurate results if the boundary conditions and loading assumptions do not represent actual conditions. Additionally, the absence of experiment validation can lead to inaccurate results leading to problems in the future. Although general standards such as ANSI, ASME, and BS offer guidelines for pipe support systems, they often lack specific design provisions for pipe saddle supports. To address this gap, an oil and gas company which is Petronas developed its own piping support construction standard for large-diameter pipes ranging from 26 to 56 inches in nominal pipe size. Nevertheless, a case was identified in which the actual pipe loading exceeded the allowable limit defined by the standard, suggesting the need for further refinement. To investigate this issue, experiment was conducted on a pipe saddle support subjected to vertical loading. The sample of pipe saddle support is used 1.5 mm thickness. Additionally, the setup featured a portal frame secured using an underground locking system, where a pipe was loaded onto a pipe saddle support sample using a hydraulic system. Stress data were obtained from strain gauges placed at eight points on the flange plate, while the applied load was recorded using a 5-ton capacity load cell. The results indicated that, on average, the pipe saddle support samples failed at an applied load of 16,670.3 N. These experiment results were then used to validate a finite element model, incorporating boundary condition configuration, weld connection modelling, and mesh sensitivity analysis. The boundary condition setup was found to have the most significant effect, with the highest accuracy achieved using an inward contact angle of 11° and a ratio contact angle ( $R_{ca}$ ) of 0.83, providing an 83.3% accuracy. Using this validated model, a correlation study was conducted to compare pipe saddle supports with sliding, guide, and stopper attachment based on the pipe support construction standard developed by Petronas. The quantitative study concluded that higher pipe loads require thicker saddle plates, with sliding supports requiring the least thickness and stopper supports requiring the most. To further validate the correlation, an additional experiment was performed using a 4.5 mm plate pipe. With the same design and boundary conditions, the FEA achieved an accuracy of 94.6%, demonstrating the suitability of the modelling technique for industrial application. This research offers refined design recommendations that can support fabricators in producing more valid pipe saddle supports for future use.

## **KAJIAN KORELASI ANTARA KETEBALAN PLAT SOKONGAN PELANA PAIP DAN BEBANAN PAIP**

### **ABSTRAK**

*Sistem perpaipan merupakan rangkaian paip yang saling berhubung dan direka untuk mengangkut bendalir seperti cecair, gas, atau buburan dari satu lokasi ke lokasi yang lain. Kaedah ini dianggap cekap kerana keupayaannya mengekalkan kualiti bendalir tanpa kehilangan sifat yang ketara. Sistem ini bergantung kepada pelbagai kelengkapan dan komponen struktur untuk sokongan, antaranya sokongan pelana paip yang lazim digunakan bagi menyokong paip keluli mendatar dengan memindahkan beban ke struktur bersebelahan serta mengelakkan sentuhan langsung antara paip dan asasnya. Taburan tegasan dalam sokongan pelana paip sering dianalisis menggunakan kaedah Analisis Unsur Terhingga (FEA), namun keputusan yang diperoleh boleh menjadi kurang tepat sekiranya syarat sempadan dan andaian beban tidak mewakili keadaan sebenar, terutamanya tanpa pengesahan eksperimen. Walaupun piawaian umum seperti ANSI, ASME, dan BS menyediakan garis panduan bagi sistem sokongan paip, ia tidak memberikan perincian khusus untuk reka bentuk sokongan pelana paip. Bagi mengatasi kekurangan ini, Petronas telah membangunkan piawaian pembinaan sokongan paip tersendiri bagi paip berdiameter besar bersaiz nominal antara 26 hingga 56 inci. Namun, terdapat kes di mana beban sebenar paip melebihi had yang ditetapkan oleh piawaian tersebut, menandakan keperluan penambahbaikan. Bagi menyiasat isu ini, ujikaji dijalankan ke atas sokongan pelana paip menggunakan sampel setebal 1.5 mm dengan beban menegak yang dikenakan melalui sistem hidraulik pada rangka portal yang dikunci bawah tanah. Tegasan diukur menggunakan tolok regangan pada lapan titik di plat bebibir, manakala beban direkod dengan sel beban berkapasiti 5 tan. Keputusan menunjukkan kegagalan berlaku secara purata pada beban 16,670.3 N. Data eksperimen ini digunakan untuk mengesahkan model FEA melibatkan konfigurasi syarat sempadan, pemodelan kimpalan, dan analisis sensitiviti jejaring. Ketepatan tertinggi dicapai apabila sudut sentuhan ke dalam ialah  $11^\circ$  dan nisbah sudut sentuhan ( $R_{ca}$ ) ialah 0.83 dengan ketepatan 83.3%. Berdasarkan model yang disahkan, kajian korelasi dijalankan untuk membandingkan sokongan pelana paip jenis gelongsor, panduan, dan penyekat mengikut piawaian Petronas. Hasil kajian mendapati beban paip yang lebih tinggi memerlukan plat pelana lebih tebal, dengan sokongan gelongsor memerlukan ketebalan paling rendah manakala sokongan penyekat memerlukan ketebalan paling tinggi. Eksperimen tambahan dengan plat setebal 4.5 mm dijalankan untuk pengesahan lanjut, dan dengan reka bentuk serta syarat sempadan yang sama, FEA mencapai ketepatan 94.6%, membuktikan teknik pemodelan ini sesuai untuk aplikasi industri. Kajian ini memberikan cadangan reka bentuk yang lebih terperinci bagi membantu pengilang menghasilkan sokongan pelana paip yang lebih sahih untuk kegunaan pada masa hadapan.*

## ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all those who have supported me throughout the journey of completing this thesis. First and foremost, I extend my sincere thanks to my supervisor, Associate Professor Ir. Dr. Mohd Shukri Bin Yob, for his invaluable guidance, unwavering support, and continuous encouragement. His expert advice and consistent feedback have been instrumental in shaping the direction and quality of this research. I am also deeply grateful to my co-supervisor, Associate Professor Dr. Mohd Juzaila Bin Abd. Latif, for his support and constructive input throughout the course of this study.

My heartfelt thanks also go to my colleagues and all the members of the Applied Mechanical Design Laboratory (AMD Lab) at Universiti Teknikal Malaysia Melaka for their collaboration, assistance, and shared knowledge. The resources, equipment, and the stimulating environment of the lab have been crucial in conducting the experimental work for this thesis.

I am deeply grateful to my family for their unwavering support, patience, and love throughout this journey. Their belief in me has been a constant source of strength.

I would also like to extend my sincere appreciation to my friends at Universiti Teknikal Malaysia Melaka and back home in Indonesia, for their encouragement, support, and the thoughtful discussions that have helped refine my ideas. Their presence and understanding have meant a lot during the challenges and triumphs of this process.

This thesis would not have been possible without the collective support of all these individuals and organizations. I am profoundly thankful to each and every one of you.

## TABLE OF CONTENTS

|                                                             | <b>PAGES</b> |
|-------------------------------------------------------------|--------------|
| <b>DECLARATION</b>                                          | <b>i</b>     |
| <b>APPROVAL</b>                                             | <b>ii</b>    |
| <b>DEDICATION</b>                                           | <b>iii</b>   |
| <b>ABSTRACT</b>                                             | <b>iv</b>    |
| <b>ABSTRAK</b>                                              | <b>vii</b>   |
| <b>ACKNOWLEDGEMENT</b>                                      | <b>x</b>     |
| <b>TABLE OF CONTENTS</b>                                    | <b>xv</b>    |
| <b>LIST OF TABLES</b>                                       | <b>xvi</b>   |
| <b>LIST OF FIGURES</b>                                      | <b>xvii</b>  |
| <b>LIST OF ABBREVIATIONS</b>                                | <b>xviii</b> |
| <b>LIST OF SYMBOLS</b>                                      |              |
| <b>LIST OF APPENDICES</b>                                   |              |
| <b>LIST OF PUBLICATIONS</b>                                 |              |
| <br><b>CHAPTER</b>                                          |              |
| <br><b>1. INTRODUCTION</b>                                  | <b>1</b>     |
| 1.1 Background                                              | 1            |
| 1.2 Problem Statement                                       | 3            |
| 1.3 Research Questions                                      | 4            |
| 1.4 Research Objectives                                     | 4            |
| 1.5 Significance of the Research                            | 5            |
| 1.6 Scope of Research                                       | 6            |
| 1.7 Thesis Outline                                          | 6            |
| <br><b>2. LITERATURE REVIEW</b>                             | <b>8</b>     |
| 2.1 Introduction                                            | 8            |
| 2.2 Role of Pipe Supports in Piping Systems                 | 9            |
| 2.3 Types of Pipe Support                                   | 10           |
| 2.3.1 Primary Pipe Support                                  | 11           |
| 2.3.2 Secondary Pipe Support                                | 20           |
| 2.4 Attachment of Pipe Saddle Support                       | 25           |
| 2.4.1 Pipe Saddle Support with Sliding Plate                | 26           |
| 2.4.2 Pipe Saddle Support with Support Guide                | 28           |
| 2.4.3 Pipe Saddle Support with Stopper Support              | 30           |
| 2.5 Failure Mode in Pipe Supports                           | 32           |
| 2.5.1 Overloading on Pipe Support                           | 33           |
| 2.5.2 Displacement of Pipe Saddle Support on Pipe Structure | 37           |
| 2.6 Requirement of Load Test for Steel Structure            | 39           |
| 2.6.1 Safety Factor of Test Rig for Load Test               | 39           |
| 2.6.2 Stress Analysis on Test Rig for Load Test             | 40           |
| 2.7 Experiment Setup of Load Test for Pipe Support          | 41           |
| 2.8 Procedure of FEA for Pipe Saddle Support                | 47           |
| 2.8.1 Boundary Condition                                    | 49           |

|                                                                                                      |           |
|------------------------------------------------------------------------------------------------------|-----------|
| 2.8.2 Welding Connection Modelling                                                                   | 51        |
| 2.8.3 Mesh Sensitivity Analysis                                                                      | 53        |
| <b>3. METHODOLOGY</b>                                                                                | <b>56</b> |
| 3.1 Introduction                                                                                     | 56        |
| 3.2 Preparation of Pipe Saddle Support Sample                                                        | 58        |
| 3.2.1 Design of Pipe Saddle Support Sample                                                           | 58        |
| 3.2.2 Material Selection for Pipe Saddle Support Sample                                              | 60        |
| 3.2.3 Fabrication of Pipe Saddle Support Sample                                                      | 60        |
| 3.2.4 Dye Penetrant Inspection for Welding Connection                                                | 63        |
| 3.3 Development of Test Rig for Pipe Saddle Support Under Vertical Load                              | 64        |
| 3.3.1 Design of Test Rig for Pipe Saddle Support Under Vertical Load                                 | 65        |
| 3.3.2 FEA of Test Rig for Pipe Saddle Support Under Vertical Load                                    | 69        |
| 3.3.3 Equipment of Test Rig for Pipe Saddle Support Under Vertical Load                              | 71        |
| 3.3.4 Physical Setup of Test Rig for Pipe Saddle Support Under Vertical Load                         | 75        |
| 3.4 Procedure of Vertical Load Test for Pipe Saddle Support                                          | 76        |
| 3.4.1 Preparation for Pipe Saddle Support Sample on Test Rig                                         | 76        |
| 3.4.2 Load Application to Pipe Saddle Support Sample                                                 | 78        |
| 3.5 Validation for FE Model of Pipe Saddle Support                                                   | 80        |
| 3.5.1 Configurations of Boundary Condition for Pipe Saddle Support FE Model                          | 81        |
| 3.5.2 Weld Connection Modelling of Pipe Saddle Support FE Model                                      | 89        |
| 3.5.3 Mesh Sensitivity Analysis of Pipe Saddle Support FE Model                                      | 90        |
| 3.6 Correlation Study Between Plate Thickness and Pipe Loading of Pipe Saddle Support                | 91        |
| 3.7 Summary                                                                                          | 94        |
| <b>4. RESULTS AND DISCUSSION</b>                                                                     | <b>96</b> |
| 4.1 Introduction                                                                                     | 96        |
| 4.2 Experiment Result of Pipe Saddle Support Under Vertical Load                                     | 97        |
| 4.2.1 Stress Results of Pipe Saddle Support                                                          | 97        |
| 4.2.2 Physical Condition of Pipe Saddle Support                                                      | 99        |
| 4.3 FEA Validation of Pipe Saddle Support                                                            | 100       |
| 4.3.1 Boundary Condition Configuration for Pipe Saddle Support FE Model                              | 100       |
| 4.3.2 Weld Connection Modelling of Pipe Saddle Support FE Model                                      | 121       |
| 4.3.3 Mesh Sensitivity Analysis of Pipe Saddle Support FE Model                                      | 123       |
| 4.4 Correlation Study Between Plate Thickness and Loading for Pipe Saddle Support                    | 124       |
| 4.4.1 Pipe Saddle with Sliding Support                                                               | 125       |
| 4.4.2 Pipe Saddle with Guide Support                                                                 | 125       |
| 4.4.3 Pipe Saddle with Stopper Support                                                               | 126       |
| 4.4.4 Pipe Saddle Support Comparison between Plate Thickness of Pipe Saddle Support and Pipe Loading | 127       |
| 4.5 Validation of Correlation Study Between Plate Thickness of Pipe Saddle Support and Pipe Loading  | 128       |

|                                           |            |
|-------------------------------------------|------------|
| 4.6 Summary                               | 130        |
| <b>5. CONCLUSIONS AND RECOMMENDATIONS</b> | <b>132</b> |
| 5.1 Conclusions                           | 132        |
| 5.2 Recommendation for Future Research    | 133        |
| <b>REFERENCES</b>                         | <b>134</b> |
| <b>APPENDICES</b>                         | <b>146</b> |



## LIST OF TABLES

| <b>TABLE</b> | <b>TITLE</b>                                                                                                           | <b>PAGE</b> |
|--------------|------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 2.1    | Detailed dimensions of design standard for pipe saddle support                                                         | 35          |
| Table 2.2    | Allowable load of design standard for pipe saddle support                                                              | 36          |
| Table 3.1    | Properties of mild steel plate material                                                                                | 60          |
| Table 3.2    | Applied load ( $F_a$ ) for each component of test rig                                                                  | 70          |
| Table 3.3    | Von Mises stress and safety factor of the test rig components                                                          | 70          |
| Table 3.4    | Specification of load cell used in pipe saddle support experiment                                                      | 73          |
| Table 3.5    | Specification of strain gauge used in pipe saddle support experiment                                                   | 73          |
| Table 3.6    | Specification of static data logger used in vertical load test                                                         | 74          |
| Table 3.7    | Refined allowable load for pipe saddle support from piping design standard                                             | 92          |
| Table 3.8    | List of dimensions for pipe saddle support modified drawing                                                            | 94          |
| Table 4.1    | Experiment results of pipe saddle support under vertical load                                                          | 98          |
| Table 4.2    | Stress results and FEA accuracy of boundary condition configuration 1 with fixed support on the base plate             | 101         |
| Table 4.3    | Stress results and FEA accuracy of boundary condition configuration 2 with fixed support on the base plate             | 103         |
| Table 4.4    | Stress results and FEA accuracy of boundary condition configuration 3 with fixed support on the base plate             | 105         |
| Table 4.5    | Experiment and FEA result comparison for boundary condition configuration 4 with inward angle ( $\alpha$ ) = $5^\circ$ | 107         |
| Table 4.6    | Accuracy of FEA result for boundary condition configuration 4 with inward angle ( $\alpha$ ) = $5^\circ$               | 108         |
| Table 4.7    | Experiment and FEA result comparison for boundary condition configuration 4 with inward angle ( $\alpha$ ) = $7^\circ$ | 108         |
| Table 4.8    | Accuracy of FEA result for boundary condition configuration 4 with inward angle ( $\alpha$ ) = $7^\circ$               | 109         |
| Table 4.9    | Experiment and FEA result comparison for boundary condition configuration 4 with inward angle ( $\alpha$ ) = $9^\circ$ | 109         |

|            |                                                                                                                  |     |
|------------|------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.10 | Accuracy of FEA result for boundary condition configuration 4 with inward angle ( $\alpha$ ) = 9°                | 110 |
| Table 4.11 | Experiment and FEA result comparison for boundary condition configuration 4 with inward angle ( $\alpha$ ) = 11° | 110 |
| Table 4.12 | Accuracy of FEA result for boundary condition configuration 4 with inward angle ( $\alpha$ ) = 11°               | 111 |
| Table 4.13 | Experiment and FEA result comparison for boundary condition configuration with inward angle ( $\alpha$ ) = 13°   | 111 |
| Table 4.14 | Accuracy of FEA result for boundary condition configuration 4 with inward angle ( $\alpha$ ) = 13°               | 112 |
| Table 4.15 | Experiment and FEA result comparison for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 5°  | 114 |
| Table 4.16 | Accuracy of FEA result for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 5°                | 114 |
| Table 4.17 | Stress results and FEA accuracy for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 7°       | 115 |
| Table 4.18 | Accuracy of FEA result for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 7°                | 115 |
| Table 4.19 | Stress results and FEA accuracy for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 9°       | 116 |
| Table 4.20 | Accuracy of FEA result for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 9°                | 116 |
| Table 4.21 | Stress results and FEA accuracy for boundary condition configuration with inward angle ( $\alpha$ ) = 11°        | 117 |
| Table 4.22 | Accuracy of FEA result for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 11°               | 117 |
| Table 4.23 | Stress results and FEA accuracy for boundary condition configuration with inward angle ( $\alpha$ ) = 13°        | 118 |
| Table 4.24 | Accuracy of FEA result for boundary condition configuration 5 with inward angle ( $\alpha$ ) = 13°               | 118 |
| Table 4.25 | Welding thickness effect on normal stress in pipe saddle support FE model                                        | 122 |
| Table 4.26 | Mesh number of element effect on normal stress for pipe saddle support FE model                                  | 123 |

|            |                                                                                  |     |
|------------|----------------------------------------------------------------------------------|-----|
| Table 4.27 | Plate Thickness for Sliding Support Based on Pipe Size                           | 125 |
| Table 4.28 | Plate Thickness for Guide Support Based on Pipe Size                             | 126 |
| Table 4.29 | Effective Plate Thickness for Stopper Support Based on Pipe Size                 | 127 |
| Table 4.30 | Accuracy of FEA results for pipe saddle support model with 4.5 m plate thickness | 129 |



## LIST OF FIGURES

| <b>FIGURE</b> | <b>TITLE</b>                                                                    | <b>PAGE</b> |
|---------------|---------------------------------------------------------------------------------|-------------|
| Figure 1.1    | Arrangement of pipe saddle support                                              | 2           |
| Figure 2.1    | Primary and secondary pipe support example                                      | 11          |
| Figure 2.2    | T-shaped pipe shoe support design                                               | 12          |
| Figure 2.3    | C-shaped pipe shoe support design                                               | 12          |
| Figure 2.4    | C-shaped pipe shoe support configuration                                        | 13          |
| Figure 2.5    | Example of pipe saddle support with only saddle plate                           | 14          |
| Figure 2.6    | Pipe saddle support for large diameter steel piping                             | 14          |
| Figure 2.7    | Pipe saddle support type-38                                                     | 15          |
| Figure 2.8    | Design of saddle support for pressure vessel                                    | 16          |
| Figure 2.9    | Pipe clamp support fixed to the structure                                       | 17          |
| Figure 2.10   | Pipe clamp support with shock arresters                                         | 18          |
| Figure 2.11   | Slipped-bracket pipe clamp support                                              | 18          |
| Figure 2.12   | Pipe clamp support for different sizes                                          | 19          |
| Figure 2.13   | Pipe clamp support for lower than ambient temperature                           | 20          |
| Figure 2.14   | Typical cantilever-type pipe support configuration                              | 21          |
| Figure 2.15   | Force distribution on cantilever-type pipe support subjected to seismic loading | 21          |
| Figure 2.16   | Typical frame-type pipe support configuration                                   | 22          |
| Figure 2.17   | Model of frame-type pipe support                                                | 23          |
| Figure 2.18   | Force distribution on frame-type pipe support subjected to seismic loading      | 23          |
| Figure 2.19   | Typical oblique-type pipe support configuration                                 | 24          |
| Figure 2.20   | Force distribution on cantilever-type pipe support subjected to seismic loading | 25          |
| Figure 2.21   | Design example of sliding support type                                          | 26          |

|             |                                                                              |    |
|-------------|------------------------------------------------------------------------------|----|
| Figure 2.22 | Pipe saddle support with sliding plate that attached to the pipe structure   | 27 |
| Figure 2.23 | Design example of guide support type                                         | 28 |
| Figure 2.24 | Pipe saddle support with support guide that welded on the pipe structure     | 29 |
| Figure 2.25 | Pipe saddle support with guide stop that welded under the base plate         | 31 |
| Figure 2.26 | Placement for pipe saddle support on the pipeline                            | 32 |
| Figure 2.27 | Design standard for pipe saddle support for 26 inch to 56 inch               | 34 |
| Figure 2.28 | Fracture location on pipe clamp                                              | 37 |
| Figure 2.29 | Dislocated 24-inch pipe shoe caused bending on the supporting beam           | 38 |
| Figure 2.30 | Dislocated 24-inch pipe shoe away from the supporting beam                   | 38 |
| Figure 2.31 | In-situ test setup for pipe hanger                                           | 42 |
| Figure 2.32 | Test model for seismic load test of oblique type pipe support                | 43 |
| Figure 2.33 | Test model for seismic load test of frame type pipe support                  | 43 |
| Figure 2.34 | Test setup for seismic load test of frame type pipe support                  | 43 |
| Figure 2.35 | Test setup for static loading test on RC                                     | 44 |
| Figure 2.36 | Experimental Setup for post-tensioned prestressed concrete pipe bending test | 45 |
| Figure 2.37 | The setup of 4-point bending test for CFRP composite                         | 46 |
| Figure 2.38 | FEA results of pipe shoe model using fixed support on base plate             | 49 |
| Figure 2.39 | CAD welding connection model for stiffness analysis                          | 51 |
| Figure 2.40 | Meshing process of welding connection model for stiffness analysis           | 51 |
| Figure 2.41 | Weld model for steel joints study                                            | 52 |
| Figure 2.42 | Mesh of saddle support for pressure vessel that reached convergence          | 53 |
| Figure 2.43 | Mesh for pressure vessel and the saddle structure that reached convergence   | 54 |
| Figure 3.1  | Flowchart process of the pipe saddle support study                           | 57 |
| Figure 3.2  | Design of pipe saddle support model                                          | 58 |
| Figure 3.3  | Wrap angle for saddle plate                                                  | 59 |

|             |                                                                                          |    |
|-------------|------------------------------------------------------------------------------------------|----|
| Figure 3.4  | Shear cutting process of mild steel plate for pipe saddle support sample                 | 61 |
| Figure 3.5  | Rolling process for saddle plate using hydraulic 3-roll plate machine                    | 62 |
| Figure 3.6  | Welding connection between the flange plates, base plate, and saddle plate               | 63 |
| Figure 3.7  | DPI for welding connection on pipe saddle support sample                                 | 64 |
| Figure 3.8  | Overall setup of test rig for pipe saddle support vertical load test                     | 65 |
| Figure 3.9  | Design of beam for portal frame                                                          | 66 |
| Figure 3.10 | Design of column for portal frame                                                        | 67 |
| Figure 3.11 | Underground locking system for portal frame test rig                                     | 67 |
| Figure 3.12 | Load application mechanism for pipe saddle support sample                                | 68 |
| Figure 3.13 | Load flow of test rig for vertical load setup                                            | 69 |
| Figure 3.14 | Hydraulic pack used in pipe saddle support experiment                                    | 72 |
| Figure 3.15 | Load cell used in pipe saddle support experiment                                         | 72 |
| Figure 3.16 | Strain gauge used in pipe saddle support experiment                                      | 73 |
| Figure 3.17 | Static data logger used in vertical load test                                            | 74 |
| Figure 3.18 | Physical setup of test rig for pipe saddle support under vertical load                   | 75 |
| Figure 3.19 | Strain gauge placement on the flange plate of pipe saddle support model                  | 77 |
| Figure 3.20 | Pipe saddle support sample equipped with strain gauge                                    | 77 |
| Figure 3.21 | Pipe saddle support sample locked on to support base using bolting                       | 78 |
| Figure 3.22 | Configuration of loading condition for pipe saddle support sample                        | 79 |
| Figure 3.23 | Flowchart of FEA validation for pipe saddle support model                                | 80 |
| Figure 3.24 | Loading condition for load applied directly to saddle plate of pipe saddle support       | 82 |
| Figure 3.25 | Model selection option on ANSYS                                                          | 82 |
| Figure 3.26 | Loading condition for load applied directly to rigid saddle plate of pipe saddle support | 83 |
| Figure 3.27 | Stiffness behaviour setting for rigid saddle plate on ANSYS                              | 84 |

|             |                                                                                                                                 |     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3.28 | Loading condition for load applied directly to rigid saddle plate of pipe saddle support                                        | 84  |
| Figure 3.29 | Loading condition for load applied on a specific angle with contact ratio ( $R_{ca}$ )                                          | 86  |
| Figure 3.30 | Displacement boundary conditions for fixed support applied on the base plate                                                    | 87  |
| Figure 3.31 | Applying fixed support on the base plate of pipe saddle support in ANSYS                                                        | 87  |
| Figure 3.32 | Displacement boundary condition when the fixed support applied on the bolting and remote displacement applied on the base plate | 88  |
| Figure 3.33 | Applying fixed support to the bolting hole surface of the pipe saddle support in ANSYS                                          | 88  |
| Figure 3.34 | Applying remote displacement to the base plate surface of the pipe saddle support in ANSYS                                      | 89  |
| Figure 3.35 | The definition setting for remote displacement on ANSYS                                                                         | 89  |
| Figure 3.36 | Welding connection model on pipe saddle support model                                                                           | 90  |
| Figure 3.37 | Modified drawing of piping design standard for pipe saddle support model                                                        | 93  |
| Figure 4.1  | Graph experiment result of pipe saddle support under vertical load                                                              | 98  |
| Figure 4.2  | Pipe saddle support sample after subjected to vertical load                                                                     | 99  |
| Figure 4.3  | Graph comparison between FEA for boundary condition configuration 1 and experiment stress results                               | 101 |
| Figure 4.4  | FE model result of boundary condition configuration 1                                                                           | 102 |
| Figure 4.5  | Graph comparison between FEA for boundary condition configuration 2 and experiment stress results                               | 103 |
| Figure 4.6  | FEA stress distribution of boundary condition configuration 2 with fixed support on the base plate.                             | 104 |
| Figure 4.7  | Graph comparison between FEA for boundary condition configuration 2 and experiment stress results                               | 105 |
| Figure 4.8  | FEA stress distribution of boundary condition configuration 3 with fixed                                                        | 106 |
| Figure 4.9  | Graph comparison of boundary configuration 4 with $\alpha = 5^\circ, 7^\circ, 9^\circ, 11^\circ, 13^\circ$ .                    | 112 |

|             |                                                                                                                    |     |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.10 | Graph comparison of boundary configuration 5 with $\alpha = 5^\circ, 7^\circ, 9^\circ, 11^\circ, 13^\circ$         | 119 |
| Figure 4.11 | FEA stress distribution of boundary condition configuration 5 with inward angle of $11^\circ$ and $R_{ca}$ of 0.83 | 120 |
| Figure 4.12 | Graph comparison of overall accuracy between boundary condition configuration 1, 2, 3, 4, and 5                    | 121 |
| Figure 4.13 | Graph for welding thickness modelling effect on normal stress in pipe saddle support FE model                      | 122 |
| Figure 4.14 | Graph of mesh sensitivity analysis for pipe saddle support FE model                                                | 124 |
| Figure 4.15 | Graph correlation between plate thickness and pipe size for each type of pipe saddle support                       | 128 |
| Figure 4.16 | Stress result comparison between FEA and experiment of pipe saddle support with 4.5 mm plate thickness             | 129 |

جامعة ملاكا  
جامعة ملاكا

جامعة ملاكا

## LIST OF ABBREVIATIONS

|      |                                            |
|------|--------------------------------------------|
| ANSI | - American National Standards Institute    |
| ASME | - American Society of Mechanical Engineers |
| BS   | - British Standard                         |
| FEA  | - Finite Element Analysis                  |
| MIG  | - Metal Inert Gas                          |
| NPS  | - Nominal Pipe Size                        |



## LIST OF SYMBOLS

|                |                            |
|----------------|----------------------------|
| $\rho$         | - Density                  |
| $\sigma_y$     | - Yield strength           |
| $F_a$          | - Applied load             |
| $R_{ca}$       | - Ratio angle of contact   |
| $\alpha$       | - Inward angle of contact  |
| $\beta$        | - Outward angle of contact |
| $T_w$          | - Weld thickness           |
| $\sigma_v$     | - Von-mises stress         |
| $\sigma_n$     | - Normal stress            |
| $F_{Axial}$    | - Axial load               |
| $F_{Vertical}$ | - Vertical Load            |
| $F_{Lateral}$  | - Lateral force            |

## LIST OF APPENDICES

| APPENDIX | TITLE                                            | PAGE |
|----------|--------------------------------------------------|------|
| A        | Detailed dimension of pipe saddle support sample | 138  |



## LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Rayhan, M. A., Shukri Yob, M., Juzaila, M., Latif, A., Munir, A., and Kurdi, O. (2025). Stress Comparison of Pipe Saddle Support Between Experiment and FEA under Vertical Load. *Panamerican Mathematical Journal*, 35(4s), 10–16. <https://doi.org/10.52783/pmj.v35-i4s.4461>. (Published)

Rayhan, M. A., Shukri Yob, M., Juzaila, M., Latif, A., Munir, A., and Kurdi, O. (2025). Test Rig Development for Load Test of Pipe Saddle Support. *International Journal of Advances in Applied Sciences (IJAAS)*, 14(3), 889-893. <http://doi.org/10.11591/ijaas.v14.i3.pp886-893>. (Published)

جامعة ملaka  
جامعة تكنikal ملايا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA