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ABSTRACT

The forecasting the stock market has always been a fascination among investors and
speculators. They wish to know what the stock market is like in the future. This research is on
the use of price gradients in forecasting. The significance of this research is that it is to provide
an alternative of forecasting time series prices technique apart from the standard techniques
such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional
Neural Network (CNN) etc. The objectives of this research is to propose Three-Point Moving
Gradient (TPMG) with Long Short Term Memory (LSTM) technique in stock price forecasting
to have linkage between the immediate past, the present and the immediate future values in
standard LSTM, and to evaluate the performance accuracy of the proposed TPMG with the
standard LSTM and CNN for the actual Kuala Lumpur Stock Exchange (KLSE) stock price.
The main aim of this research is to propose an alternative technique that is Three-Point Moving
Gradient with LSTM (TPMG-LSTM) to forecasting time series stock prices. The key
hypothesis of this study is that TPMG-LSTM technique can provide more accurate forecasting
than the standard LSTM or CNN. This research feeds daily market stock prices into LSTM,
CNN and price gradients into TPMG-LSTM networks and then compare the forecasting results
of each network to find out which is closest to the observed price. The main data source is the

webpage https:// www.malaysiastock.biz/Market-Watch.aspx and the sample size is 245

counters out of the population of 2845 counters in KLSE. The sampling technique involves
counters with minimum 80 price points. From the forecasting testing data collected, TPMG-
LSTM Residual Analysis (RA) (-0.0200) is closer to the real data than LSTM RA (-0.0306) or

CNN RA (0.4480). TPMG-LSTM Coefficient of Determination (R?) (-0.4782) is closer to the
i


https://www.malaysiastock.biz/Market-Watch.aspx

real data than LSTM-LSTM R? (-4.1052) or CNN R? (-12.4956). TPMG-LSTM Mean Absolute
Error (MAE) (0.0391) is closer to the real data than LSTM MAE (0.1179) or CNN MAE
(0.4831). TPMG-LSTM Root Mean Square Error (RMSE) (0.0486) is closer to the real data
than LSTM RMSE (0.1399) or CNN RMSE (0.5190). All results show that TPMG-LSTM
produces forecasting closest to the observed data compared to standard LSTM or CNN. The
main conclusion of this research is that TPMG-LSTM provides a more accurate stock price

forecasting than standard LSTM or CNN.
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ABSTRAK

GRADIEN BERGERAK TIGA TITIK BERSAMA INGATAN JANGKA PANJANG

PENDEK UNTUK RAMALAN SIRI MASA HARGA SAHAM

Meramal pasaran saham selalunya merupakan satu daya tarikan di kalangan pelabur-pelabur
dan spekulator-spekulator. Mereka ingin tahu bagaimana keadaan pasaran saham di masa
hadapan. Kajian ini bertumpu kepada penggunaan gradien harga dalam ramalan.
Kepentingan kajian ini adalah ia membekalkan satu alternatif dalam teknik ramalan siri masa
selain dari teknik-teknik yang standard seperti Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), Convolutional Neural Network (CNN) dan lain-lain. Objektif kajian ini
adalah untuk mencadangkan Gradien Bergerak Tiga Titik (TPMG) Bersama Ingatan Jangka
Panjang Pendek (LSTM) dalam famalan harga saham yang mempunyai kaitan antara masa
lalu serta merta, masa kini serta merta dan masa depan serta merta, dan menilai kejituan
prestasi TPMG yang dicadangkan dengan LSTM dan CNN standard untuk harga saham
Pasaran Saham Kuala Lumpur (KLSE). Tujuan utama kajian ini ialah untuk mencadangkan
satu teknik alternatif iaitu teknik TPMG bersama LSTM (TPMG-LSTM) meramal harga saham
siri masa. Hipotesis utama dalam kajian ini ialah teknik TPMG-LSTM boleh memberikan satu
ramalan yang lebih jitu dari LSTM atau CNN standard. Kajian ini memasukkan harga saham

pasaran harian ke dalam LSTM, CNN dan gradien harga ke dalam rangkaian TPMG-LSTM

i1



dan membandingkan keputusan ramalan setiap rangkaian untuk mengetahui mana satu yang
paling dekat dengan harga yang diperhatikan. Sumber data utama ialah laman web
https://www.malaysi-astock.biz/Market-Watch.aspx dan saiz sampel ialah 245 kaunter dari
populasi sebanyak 2845 kaunter di KLSE. Teknok persampelan melibatkan kaunter-kaunter
dengan minima 80 titik harga. Dari data ujian ramalan terkumpul, TPMG-LSTM Residual
Analysis (RA) (-0.0200) adalah lebih dekat kepada data sebenar dari LSTM RA (-0.0306) atau
CNN RA (0.4480). TPMG-LSTM Coefficient of Determination (R°) (-0.4782) adalah lebih dekat
kepada data sebenar dari LSTM R2 (-4.1052) atau CNN R2 (-12.4956). TPMG-LSTM Mean
Absolute Error (MAE) (0.0391) adalah lebih dekat kepada data sebenar dari LSTM MAE
(0.1179) atau CNN MAE (0.4831). TPMG-LSTM Root Mean Square Error (RMSE) (0.0486)
adalah lebih dekat daripada data sebenar dari LSTM RMSE (0.1399) atau CNN RMSE
(0.5190). Semua keputusan menunjukkan bahawa TPMG-LSTM menghasilkan ramalan yang
paling dekat dengan data yang diperhatikan berbanding dengan LSTM atau CNN standard.
Kesimpulan utama kajian ini adalah TPMG-LSTM memberikan satu ramalan lebih jitu

berbanding dengan LSTM atau CNN standard.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

In recent years, Deep Learning (DL) has transformed artificial intelligence, leading to
cutting-edge performance on a range of tasks. (Al-IQubaydhi et al., 2024). When processing
sequential data, such as text or time series, Recurrent Neural Networks (RNNs), are better at
capturing these sequence links than classic feed-forward networks, which have trouble with
sequence processing (Beltozar-Clemente and Iparraguirre-Villanueva, 2024). RNN transfers
data back into itself and has cycles Schmidt (2019). RNNs have gained a lot of traction in
research domains that deal with sequential input, such as text, audio, and video. However,
traditional RNNs with sigmoid or tanh activation functions struggle to grasp long-term
dependencies when the input data contains a significant gap (Yu, 2019). RNN has problems of
recalling older information and long-term dependency due to vanishing and exploding
gradients (Waqas and Humphries, 2024). In addition, RNN also has slow training speed

(Zhang, 2023).

Nevertheless, there is a special class of RNN called LSTM (Sherstinsky, 2020). LSTM
has been used for a long time to estimate stock prices, and its impressive performance is well
recognized. Studies show that LSTM performs well in stock market forecasting. incorporating
gate functions into the cell structure, LSTM could efficiently handle the problem of long-term
dependency (Zhao, 2020). The ability of LSTMs to process sequential data and retain
information from earlier steps in the sequence allows them to efficiently anticipate subsequent
steps. They can efficiently forecast future steps by retaining information from earlier steps in

the sequence (Al-Selwi et al., 2024). In short, a conventional RNN can process long sequence



data more effectively because due to the gating mechanism introduced by the LSTM neural
network. This is advantageous for simulating nonlinear systems. This type of RNN also
successfully resolves the issue of gradient vanishing and exploding (Kang et al., 2023). When
learning long-term dependencies, exploding and vanishing gradient problems usually occur.
This is addressed by the powerful recurrent neural system known as the LSTM model, even in
cases when the minimal time lags are quite lengthy (Houdt, 2020). Sequence modelling benefits
greatly from the use of RRNs. They are extensively versatile and can contain a range of
information kinds, including temporal order (Zargar, 2021). These qualities make them perfect
for generating a list of recommendations. In essence, LSTM is a RNN that is trained to forecast
a value by finding the greatest fit between the past and present data. To best fit its forecast,
LSTM makes use of its historical data. The LSTM achieves this by using internal gates to
regulate its internal memory and backpropagating previously collected data as input (Elsayed
et al., 2020). The use of internal gates helps LSTM to overcome the problem of vanishing and

exploding gradient.

In time series stock price forecasting, LSTM is not a novel or obscure technique. Deep
recurrent neural networks, such as LSTM, perform better than deep feedforward neural
networks and efficiently use model parameters. They also accumulate quickly (Ayitey Junior
et al., 2022). An LSTM-based method for forecasting stock returns was proposed by Chen et
al. (2015), as cited in Gao (2024) and it was validated on the mainland stock market of China.
They verified that the performance of the LSTM model was better than that of the random
forecasting method. Using characteristics like open, close, high, and low prices, Roondiwala
et al. (2015) also implemented an LSTM network to forecast India's Nifty prices with some
degree of success, as cited in Patil et al. (2021). They were reasonably accurate in forecasting
the open, close, high, and low prices. Di Persio and Honchar (2016) evaluated the relative

performance of three distinct RNN models - the RNN, the LSTM, and the GRU - on the price



of Google stock in 2016, as cited in Phuoc et al. (2024). It appeared that LSTM performed
better than the others. To anticipate the starting price of ten distinct firms, Akita et al. (2016)
gathered recorded data from a Japanese newspaper to be used as LSTM input in conjunction
with market time-series data. They were able to accurately forecast the opening prices of each
of the ten distinct companies. Based on price history and technical analysis indications, Nelson,
D.M., as cited in Hu et al. (2021), suggested an LSTM model. The suggested model
outperformed the MLP and Random Forest models, according to the findings. The
implementation's efficacy has been evaluated in comparison to multi-layered perceptron
baselines, random forest, and pseudo-random models. Bao et al. (2017) applied the Haar
wavelet transformation to denoise the financial time series data and implemented the stacked
autoencoders to learn the deep features of the data and then used LSTM to forecast the closing
price of stock indices, as cited in Bhandari et al. (2022). To forecast CSI300 and sentiment, Li
et al. (2017) used investor opinion from forum postings and combined it with historical market
data into an LSTM network, as cited in Karlis et al. (2021). The research found that LSTMs
outperformed benchmark models and that adding sentiment characteristics resulted in notable
improvements in accuracy (from 78.57% to 87.86%) when forecasting the open price the
following day. This demonstrated the superior accuracy of LSTM over other models. To
forecasting NSEI listed equities, Selvin et al compared three distinct Deep Learning
architectures: CNN-sliding window models, LSTM, and RNN, as cited in Fathali et al. (2022).
LSTM appeared to do better than the rest. Yan and Ouyang (2017) demonstrated that LSTM is
a better strategy to estimate the daily returns of the shanghai composite index as cited in Arslan
et al. (2023). Kim and Won (2018) built a hybrid model to forecast the volatility of the Korean
stock price index (KOPSI 200) by fusing GARCH-type models with the LSTM model, as cited

in Amirshahi and Lahmiri (2023).



A hybrid LSTM and GRU Deep Learning model was suggested by Hossain et al (2019)
to forecast the American S and P 500 time series using data from 1950 to 2016. To produce the
first-level forecasting, the procedure, as mentioned by Dael et al. (2023), entails feeding the
input data into an LSTM network and then shifting the LSTM layer's output to the GRU layer.
With a focus on LSTM forecasting, Sezer et al. (2020) wrote a study titled "Financial Time
Series Forecasting with Deep Learning: A Systematic Literature Review: 2005-2019". Many
Deep Learning model developers are found to favour LSTM networks for solving challenging
tasks like handwritten character recognition and automatic speech. Time-series data are
typically utilized with these LSTM models. They can be used in financial time series analysis,
sentiment analysis, speech recognition, language modelling, natural language processing
(NLP), speech recognition, and predictive analysis. An article titled "Forecasting stock prices
with Long Short-Term Memory neural network based on attention mechanism" was published
by Qiu et al. (2020). Text processing and speech recognition are two areas where LSTM neural
networks excel. In addition, LSTM neural networks are appropriate for random nonstationary
sequences like stock-price time series due to their selectivity and memory cells. Lin et al.
(2021) use LSTM combined with Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) to forecast the stock index price of Standard and Poor’s 500
Index (SandP500) and the China Security 300 Index (CSI300). This model performed well
with great accuracy. Wu et al. (2021) proposed a new framework structure combining
Convolutional Neural Network with LSTM Neural Network to forecast 10 stocks in USA and
Taiwan. Jabeen et al. (2021) proposed a LSTM method of forecasting for major stock sectors

using COVID sentiment.

For LSTM, there are a few success stories. A recurrent LSTM network was suggested
by Wiese (2007) as a method for identifying fraudulent credit card transactions. Recurrent

networks should be adept at identifying fraudulent patterns in card transaction sequences,



according to the authors, as they were intended to handle sequences. The authors were able to
show how the LSTM method is superior to the SVM algorithm (Afanasiev, 2024). Using
LSTM, Roondiwala et al. (2015) were able to forecast India's NIFTY50 with remarkable
accuracy, as cited in Patil et al. (2021). Gunduz (2021) used ensemble learning and linear-based
Deep Learning (LSTM) models to forecast the hourly direction of eight banking stocks in Borsa
Istanbul with remarkable accuracy. Nawaz et al. (2021) found that LSTM outperformed other
models in sentiment analysis of eWOM from a women's clothing company, according to
performance assessment factors. Joseph et al. (2023) proposes a novel hybrid bidirectional
LSTM (BiLSTM) model for near real-time wind speed forecasting. Gulmez created an
optimized deep LSTM network with the ARO model (LSTM-ARO) created to forecast stock
prices (Gulmez, 2023). Xu et al. forecasted crude oil futures based on Bi-LSTM-Attention
model (Xu et al., 2024). Shi et al. developed an integrated GCN-LSTM stock price movement
forecasting based on knowledge-incorporated graph construction (Shi et al., 2024). Arepalli
and Naik devised a Deep Learning-enabled IoT framework for early hypoxia detection in aqua
water using light weight spatially shared attention-LSTM network (Arepalli and Naik, 2024).
Mamdouh et al. improved flight delays forecasting by developing attention-based bidirectional
LSTM network (Mamdouh et al., 2024). Because LSTM was able to forecast the stock market
rather well, it is now used more often in stock markets across the globe. Globally, the

application of LSTM in stock market forecasting is growing quickly.

However, using statistical tests, Greaves-Tunnell & Harchaoui (2019) came to the
conclusion that LSTM is unable to produce long memory sequences from white noise inputs
or accurately represent the long memory effect in the input. Furthermore, one shortcoming of

typical LSTM networks is that they cannot handle irregular time intervals (Baytas et al., 2017).

This research is important because it explores the possibility of an alternate way using

LSTM to forecast the stock prices.





