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ABSTRACT
With the increasing adoption of rooftop photovoltaic (PV) systems, accurate power output forecasting has 
become essential for effective energy management and grid integration. This study proposes a hybrid Artificial 
Neural Network (ANN) model optimized using the Salp Swarm Algorithm (SSA) to enhance prediction accuracy for 
rooftop PV output. SSA was selected for its strong exploration and exploitation capabilities, which complement the 
ANN’s learning strengths. Historical PV data from two university campuses in Malaysia, representing varied climatic 
conditions, were used over a one-year period to ensure model robustness. Key input variables influencing PV output 
were identified through correlation analysis, enabling more focused ANN training. SSA was used to optimize the 
ANN’s initial weights and biases, accelerating convergence and improving accuracy. Across three test cases, 
the SSA-ANN model achieved Mean Squared Error (MSE) values as low as 0.0155 and correlation coefficients (R) 
up to 0.98069, significantly outperforming standalone ANN approaches. These results demonstrate the model's 
effectiveness in improving PV forecasting accuracy, offering practical benefits for urban energy planning and 
sustainable power systems.
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1. INTRODUCTION

The global transition from fossil fuels to renewable 
energy sources is accelerating, driven by concerns 
over climate change, energy security, and rising costs 
of conventional energy. In Malaysia, solar energy 
is emerging as a key component of the country’s 
renewable energy strategy, leveraging the nation’s 
abundant sunl ight (Fernandez et al., 2024). The 
rapid decline in photovoltaic (PV) panel costs and 
advancements in energy conversion efficiency are 
further propelling this shift. Solar PV systems, known for 
their affordability, scalability, and ease of deployment, 
now serve a wide range of applications, from large-
scale solar farms to decentralized rooftop installations 
providing reliable, localized electricity to homes, 
commercial buildings, and educational institutions. 
Among these, rooftop PV systems are gaining popularity 
due to their efficient use of existing structures, eliminating 
the need for dedicated land, which is a key advantage 
in urban and institutional areas (Hassan et al., 2023).  
University campuses serve as optimal settings for the 
installation of rooftop photovoltaic systems. Universities, 
as autonomous communities with varied energy 

requirements encompassing residential, academic, and 
administrative loads, present a distinctive opportunity 
to model and enhance photovoltaic system efficiency. 
Campuses frequently possess extensive rooftop 
spaces ideal for solar systems and exhibit stable 
energy consumption patterns, rendering them optimal 
candidates for renewable energy implementation. 
This infrastructure not only fulfills the university's energy 
requirements but also functions as an active research 
facility for the advancement of solar energy research 
and energy management techniques (Maity et al., 
2024).          

Photovoltaic systems operate by converting sunlight 
into electricity through semiconductor materials. Their 
versatility supports installations ranging from residential 
rooftops to large-scale power plants. Additionally, 
they offer low maintenance, modularity, and high 
scalability, making them suitable for both on-grid 
and off-grid applications (Osman & Qureshi, 2025). 
Hybrid systems, which combine on-grid and off-grid 
features, are increasingly favored for their ability to 
store energy in batteries while still connecting to the 
main grid for backup supply (Falope et al., 2024). 
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However, PV systems remain vulnerable to performance 
fluctuations influenced by environmental factors 
such as module material, temperature, shading, dust 
accumulation, inverter efficiency, weather conditions, 
and geographic location (Okonkwo et al., 2025). 
Moreover, degradation effects like corrosion, micro-
cracks, and humidity-induced losses can further reduce 
power output over time (Islam et al., 2024; Khan et al., 
2024). These challenges underscore the importance 
of accurate output power forecasting to optimize 
energy management and grid reliability, especially in 
campus environments where energy demand fluctuates 
between peak academic hours and low-occupancy 
periods during holidays and semester breaks. Rooftop 
solar panels typically monocrystalline, polycrystalline, 
or bifacial dominate distr ibuted solar generation 
wor ldwide, maximizing land use eff iciency and 
minimizing environmental disruption (Kewte & Kewte, 
2023; Reagan et al., 2025). In Malaysia, unpredictable 
weather patterns pose a significant hurdle to consistent 
energy output. Accurate forecasting models are crucial 
to mitigate this variability, ensuring a stable power 
supply and reducing reliance on conventional energy 
sources (Hasan et al., 2024). For universities, this becomes 
even more essential, as unreliable energy supply could 
disrupt research activities, essential campus operations, 
and student accommodations. Effective predictions 
allow for better grid balancing, preventing over-reliance 
on backup systems and supporting Malaysia’s long-term 
sustainability goals (Kharrazi et al., 2020). 

Artificial Intelligence (AI) techniques, particularly 
Artificial Neural Networks (ANNs), have demonstrated 
strong potential in modeling the nonlinear behavior 
of PV systems under diverse environmental conditions 
(Keddouda et al., 2023). ANNs, inspired by biological 
neural networks, map complex input-output relationships 
through interconnected neurons, weights, and bias 
adjustments. Backpropagation, one of the most 
common training methods, iteratively refines weights to 
minimize prediction errors (Zhang et al., 2025). 

However, standard ANNs face challenges like slow 
convergence, getting trapped in local minima, and 
overfitting when trained on volatile weather data. 
Metaheuristic optimization algorithms, such as Genetic 
Algorithms (GA) (Han & Sun, 2024) and Particle Swarm 
Optimization (PSO) (Zoremsanga & Hussain, 2024) 
have emerged as effective solutions to enhance ANN 
performance by tuning initial weights and biases. 
Recent studies combining ANN with metaheuristics have 
shown significant improvements in PV power prediction 
accuracy (Hannan et al., 2021; Moreno et al., 2020). 
Nevertheless, balancing exploration (global search) 
and exploitation (local refinement) remains a persistent 
challenge in optimizing ANN parameters.

To address this, the Salp Swarm Algorithm (SSA) has 

gained attention for its ability to dynamically balance 
exploration and exploitation during optimization 
(Mirjalili et al., 2017). Inspired by the swarming behavior 
of salps in ocean currents, SSA efficiently navigates the 
search space to escape local minima and accelerate 
convergence. This study proposes a novel hybrid SSA-
ANN model for rooftop PV power prediction, leveraging 
SSA’s adaptive capabilities to fine-tune ANN weights and 
biases. The model is trained and validated using historical 
data from two university campuses representing 
different geographical and meteorological conditions 
to ensure robustness. By using university campuses as 
the testbed, this study not only enhances prediction 
accuracy for campus energy systems but also provides a 
scalable, data-driven approach that can be replicated 
in other educational institutions or urban environments 
with similar energy profiles.

The significance of this study extends beyond improved 
prediction accuracy. University campuses, as energy-
intensive microgrids, represent a strategic opportunity 
for accelerating the adoption of renewable energy. 
Accurate forecasting supports smarter energy planning, 
helping campuses reduce operational costs, lower 
carbon footprints, and improve energy self-sufficiency. 
Moreover, the research strengthens the role of 
universities as innovation hubs, integrating sustainable 
technologies into real-world systems while training 
future engineers and energy managers to tackle global 
energy challenges.

2. METHODOLOGY

The paper utilizes data collected from two university 
campuses in Malaysia: Campus 1, located on Malaysia's 
East Coast, and Campus 2, situated in the southern 
region. These campuses were strategically selected 
due to their operational rooftop photovoltaic (PV) 
systems and distinct geographical locations, providing 
a diverse dataset that captures varying climatic 
conditions. The dataset includes key parameters such as 
Global Horizontal Irradiation, Date and Time, Ambient 
Temperature, Wind Speed, PV Module Temperature, 
and Average PV Output Power, all recorded at five-
minute intervals. Data for this study were collected from 
1 February 2022 to 30 September 2023. Measurements 
were recorded at 5-minute intervals daily, between 7:30 
AM and 7:30 PM, to capture the full range of daylight 
hours relevant for photovoltaic (PV) power generation. 
This consistent data logging resulted in 144 data points 
per day, totaling 87,408 data points over the entire 
collection period. The extensive dataset supports robust 
training and evaluation of the artificial neural network 
(ANN) models for accurate PV output prediction. The 
data from two campuses are used to evaluate rooftop 
PV power production. In the first scenario, the Artificial 
Neural Network (ANN) model is trained and tested on 
a single day. The second scenario extends the testing 
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period to one month. The third scenario involves a 
more extensive training period of one year, followed 
by a three-month testing phase. This multi-scenario 
approach is designed to comprehensively assess the 
model’s performance across different training and 
testing durations, ensuring the reliability and robustness 
of the predictions.

2.1 Correlation Analysis
Correlation analysis is a vital statistical technique 
used to evaluate the relationship between input and 
output variables, determining both the existence 
and strength of these associations. This analysis helps 
uncover patterns within the dataset, providing insights 
into whether the relationships are advantageous or 
detrimental. A positive correlation indicates that the 
input and output variables increase together, while a 
negative correlation implies that one variable increases 
as the other decreases. To quantify these relationships, 
this study employs the Pearson correlation coefficient 
that is widely used to measure the linear correlation. The 
coefficient is calculated using the equation. (1). 

Where X is the input variables, Y is the output variables,  
X  is the mean of the input variables and  X  is the mean 
of the output variables.

2.2 Artificial Neural Networks (ANN)
Artificial Neural Networks (ANN) offer a powerful 
approach for predicting rooftop photovoltaic (PV) 
output power, especially when paired with supervised 
learning techniques. The training process uti l izes 
the backpropagation algorithm, which iteratively 
adjusts weights and biases across network layers 
to enhance model performance. This algor ithm 
operates in two stages: first, it forwards inputs from the 
input layer through the hidden layers to the output 
layer; then, it backpropagates errors, refining the 
connections to minimize prediction inaccuracies. 
The ANN architecture consists of input, hidden, and 
output layers, incorporating key variables such as solar 
irradiance, ambient temperature, and historical PV 
output data to generate accurate predictions.

The ANN model was configured and tested multiple 
times to determine the optimal setup. A two-hidden-
layer architecture was employed, with the number of 
neurons in each hidden layer varied heuristically from 
1 to 20. Additionally, the learning rate and momentum 
rate were adjusted between 0 and 1 to explore 
different training behaviors and improve convergence. 
Simulations were conducted for all case studies at both 
campuses to ensure the robustness and generalizability 
of the model across different climate conditions. The 

model’s performance is assessed using the Mean 
Square Error (MSE), a standard metric that measures 
the average squared difference between predicted 
and actual outputs. The MSE is calculated using the 
equation. (2). 

where, MSE is mean squared error, n is the number 
of data points, Yi is the observed values and X i is the 
predicted values. 

2.3 Development of SSA-ANN
The hybridization of the Salp Swarm Algorithm (SSA) 
with Artificial Neural Networks (ANN) is proposed to 
enhance the accuracy and efficiency of rooftop 
photovoltaic (PV) power output predictions. SSA, a 
bio-inspired metaheuristic algorithm that mimics the 
swarming behavior of salps in the ocean, is employed 
to optimize the weights and biases of the ANN, thereby 
improving its predictive performance. Traditional 
training methods, such as gradient descent, often suffer 
from slow convergence and the risk of getting trapped 
in local minima. The SSA-ANN framework overcomes 
these limitations by leveraging SSA’s strong global search 
capability, ensuring optimal weight selection for more 
accurate and robust predictions.

The hybrid approach follows a structured optimization 
process, as illustrated in Figure 1. First, the SSA parameters, 
including population size and maximum iterations, are 
initialized to guide the search for optimal solutions. 
Simultaneously, ANN parameters such as the number 
of neurons in each layer, learning rate, and momentum 
constant are set to ensure compatibility with the initial 
network configuration. The optimization process begins 
with SSA randomly generating initial positions of salps, 
representing candidate solutions for the ANN’s weight 
and bias values. An objective function, typically based 
on the Mean Square Error (MSE), evaluates the fitness of 
each solution by measuring the discrepancy between 
predicted and actual PV output. During the iterative 
optimization process, the leader salp directs the 
swarm's movement based on the best-found solution, 
while follower salps adjust their positions dynamically 
to balance exploration and exploitation. This adaptive 
movement prevents premature convergence and 
ensures the discovery of an optimal set of ANN weights. 
The optimization continues until the convergence 
criteria are met, either when the objective function 
stabilizes or the maximum iteration count is reached. 
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Figure 1: Flowchart of SSA-ANN

The final optimized weights and biases are then 
applied to the ANN model, significantly improving its 
predictive accuracy. This hybrid SSA-ANN approach 
not only enhances ANN training efficiency but also 
ensures reliable PV power predictions across varying 
environmental conditions. Future enhancements could 
include adaptive SSA parameter tuning, integration 
with other metaheuristic algorithms, or application 
to multi-objective optimization scenarios for further 
performance improvements.

3. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the 
proposed hybrid SSA-ANN model’s performance in 
predicting rooftop photovoltaic (PV) output power. The 
results are evaluated based on different training and 
testing scenarios, considering diverse environmental 
conditions from two distinct campuses. Key performance 
indicators, including Mean Square Error (MSE) and 
correlation analysis, are used to assess prediction 
accuracy and model reliability. Comparisons are 
made between the baseline ANN model and the SSA-
optimized ANN to highlight improvements in prediction 
precision and convergence efficiency. The discussion 
interprets the results, focusing on how SSA optimization 

enhances ANN’s ability to generalize under varying 
climatic conditions, ensuring robust and accurate PV 
power forecasts. All tables and figures must have a 
corresponding caption. 

3.1 Results of Correlation Analysis
A heatmap in Figure 2 was generated to evaluate the 
strength of the linear correlation between environmental 
variables and the average PV output power for 
Campus 1. The correlation coefficients range from 0 (no 
correlation) to 1 (perfect correlation), as indicated by 
the color bar on the right side of the figure. 

Figure 2: Results of correlation analysis for Campus 1

The feature most strongly correlated with the average 
output power is Solar I r radiance (W/m²), with a 
coefficient of 0.95. This result is expected and consistent 
with established PV performance models, as solar 
irradiance directly influences the amount of energy that 
can be harvested by the photovoltaic panels. It confirms 
that irradiance is the most critical input feature when 
predicting PV output using artificial neural networks 
or any other machine learning-based models. PV 
Module Temperature (°C) also shows a strong positive 
correlation of 0.86. While an increase in temperature 
generally reduces the efficiency of PV modules due to 
thermal losses, the high correlation suggests that the 
temperature rise is largely driven by high irradiance 
conditions—hence, it indirectly correlates with higher 
power output. This underscores the importance of 
including module temperature as a secondary feature 
in predictive models. Ambient Temperature (°C) and 
Wind Speed (m/s) show moderate correlations of 0.62 
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and 0.57, respectively. These features may influence 
system performance by affecting the operating 
temperature of the PV modules (e.g., wind providing 
a cooling effect), but their relatively lower correlation 
indicates they are not as directly impactful as irradiance 
or module temperature. Nevertheless, their inclusion 
may help improve the model’s ability to generalize 
under different environmental conditions. The perfect 
correlation value of 1.0 for Average Output Power (kW) 
with itself serves as a reference and validation of the 
heatmap structure.

The heatmap for Campus 2 in Figure 3 presents the 
Pearson correlation coefficients between environmental 
parameters and the average output power (kW) of the 
PV system. This analysis aims to identify the most relevant 
features for predicting PV performance in a hybrid ANN 
model. The most influential feature, as expected, is 
Solar Irradiance (W/m²), showing a very strong positive 
correlation of 0.97 with average output power. This aligns 
with physical principles, as solar irradiance represents 
the energy input directly converted to electrical power 
by the PV system. 

Figure 3: Results of correlation analysis for Campus 2

The high correlation reinforces the importance of 
irradiance as the primary driver of PV output and its 
essential role as a key input feature in the prediction 
model. PV Module Temperature (°C) also demonstrates 
a strong positive correlation of 0.86. This indicates that 
as module temperature rises, the average output power 
also tends to increase. However, it's important to note 
that while irradiance typically causes this increase in 

temperature, higher temperatures can lead to efficiency 
losses in PV modules. Despite this, the positive correlation 
highlights the temperature’s relevance in model training, 
particularly in environments where irradiance and heat 
levels closely track each other. Ambient Temperature 
(°C) shows a moderate correlation of 0.64, suggesting it 
contributes to PV performance but is not as dominant. 
It may influence the module temperature indirectly 
and can affect cooling rates and system efficiency, 
thus playing a supporting role in prediction accuracy. 
The most notable deviation from Campus 1 is observed 
in Wind Speed (m/s), which exhibits a very weak 
correlation of 0.049 with the average output power. This 
near-zero correlation indicates that wind speed has a 
negligible linear influence on power output in Campus 
2’s environment. While wind can help cool PV modules 
and potentially improve efficiency, this effect appears 
to be minimal or inconsistent in this dataset. The self-
correlation of 1.0 for average output power acts as a 
benchmark reference for comparison. 

The study of both campuses consistently identifies solar 
irradiation as the predominant factor, exhibiting a 
robust positive association with electricity generation. 
Conversely, ambient temperature and photovoltaic 
module temperature demonstrated fewer correlations, 
suggest ing that whi le temperature inf luences 
performance, particularly via module heating, the 
effects are less predictable and vary by location. Wind 
speed, while aiding in module cooling, demonstrated 
an inconsequential association and was hence omitted 
from further simulations. The study discovered three 
essential factors for forecasting photovoltaic output: 
ambient temperature, solar irradiation, and photovoltaic 
module temperature. The findings emphasize the 
necessity of prioritizing sun irradiance as the principal 
input for ANN models, whereas temperature-related 
variables operate as supplementary factors to account 
for performance variations. This methodology balances 
model complexity with predictive accuracy, ensuring 
flexibility to various geographical and climatic situations, 
as evidenced in the Campus 1 and Campus 2 campuses.

3.2 Results of ANN
The heuristic approach to configuring the Artificial 
Neural Network (ANN) was conducted systematically 
by first determining the optimal number of neurons 
in the first hidden layer (H1). During this stage, other 
parameters, including the second hidden layer (H2), 
learning rate (LR) and momentum constant (MC) 
were randomly selected to allow a focus on fine-
tuning H1. Once the best-performing H1 configuration 
was identified, the ANN was rerun multiple times to 
optimize H2, following the same heuristic trial-and-error 
approach. After identifying the optimal hidden layers, 
the process was repeated to tune the learning rate and 
momentum constant, ensuring the model achieved 
both fast convergence and stability. This iterative 
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process resulted in progressively lower error rates, as 
seen in Figure 4 and Figure 5 for Campus 1. 

Figure 4: Best number of neurons for Case 1 (daily prediction)

Figure 5: Best number of learning rate and momentum 
constant for Case 1 (daily prediction)

These figures present the results of the heuristic method 
for daily prediction in Case 1. The fluctuations in H1 
reflect the model’s sensitivity to initial configurations, 
highlighting the importance of careful tuning. H2, in 
comparison, showed more stable behavior, suggesting 
its role in refining the network’s performance rather than 
driving major changes. The gradual reduction in error 
across iterations confirms that the heuristic approach 
successfully narrowed down the best combination 
of parameters, balancing model complexity and 
predictive accuracy. This method, while time-intensive, 
ensures a tailored network configuration that adapts 
to the specific characteristics of the dataset, leading 
to more reliable photovoltaic (PV) power output 
predictions. 

Similar analysis is also carried out using other prediction 
categories, such as weekly prediction (Case 2) and 
monthly prediction (Case 3) for Campus 2. The best 
configuration for all cases is tabulated in Table 1. 
For Campus 1, the artificial neural network (ANN) 
performance var ied noticeably across different 
parameter settings. Case 2, with 10 neurons in H1, 4 in 
H2, a learning rate of 0.1, and a momentum coefficient 

of 0.8, achieved the lowest mean squared error (MSE) 
of 0.0163. This indicates that moderate network size 
and a conservative learning rate contributed to stable 
learning and effective generalization. In contrast, 
Case 1 with a larger architecture (H1=18, H2=10) and 
a higher learning rate (0.2) produced a higher MSE 
of 0.0281, suggesting possible overfitting or instability. 
Case 3, with a smaller network and a low learning rate 
(0.001), performed better than Case 1 but was not as 
optimal as Case 2. For Campus 2, the best result was 
obtained in Case 2, where a higher learning rate of 
1.0 combined with a moderately sized H1 (10 neurons) 
and a small H2 (2 neurons) yielded the lowest MSE of 
0.0157. Interestingly, this configuration outperformed 
the smaller networks in Cases 1 and 3, both of which 
used H1=3, H2=2 and a learning rate of 0.5, resulting 
in higher MSEs of 0.0312 and 0.0196, respectively. This 
suggests that the dataset characteristics for Campus 
2 allowed the ANN to benefit from a more aggressive 
learning strategy without sacrificing accuracy. Overall, 
these results highlight that ANN parameters, specifically 
the number of hidden neurons, learning rate, and 
momentum coefficient, play a critical role in achieving 
accurate PV output predictions. Proper tuning of these 
parameters is essential for model performance, and 
optimal settings may vary depending on the data 
characteristics of each location.

Table 1: Results of using ANN for all cases

3.3 Results of SSA-ANN
The integration of the Salp Swarm Algorithm (SSA) with 
Artificial Neural Networks (ANN) plays a significant role 
in enhancing prediction accuracy. SSA optimizes key 
ANN parameters, including the number of neurons in the 
first and second hidden layers (H1 and H2), learning rate 
(LR), and momentum constant (MC). For this study, SSA 
was configured with 20 search agents and 50 iterations. 
The primary objective of the SSA-ANN hybrid model is 
to minimize the Mean Squared Error (MSE) during ANN 
training and prediction.

The convergence curve for Case 1 in Figure 6, 
representing daily prediction performance using SSA-
ANN at Campus 1 and Campus 2, demonstrates the 
effectiveness of the SSA in optimizing ANN parameters. 
For Case 1, the curve shows a consistent and steady 
decline in MSE across the 50 iterations, reflecting an 
efficient search for the optimal configuration. The MSE 
starts around 0.032 and gradually decreases, eventually 
stabilizing just below 0.024. This steady reduction 
indicates that SSA continuously refines the ANN’s weights 
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and biases, improving prediction accuracy with each 
iteration. Notably, the final sharp drop near the end 
suggests that SSA discovered a better set of parameters 
in the later stages, reinforcing its exploratory strength. 
In contrast, the Campus 2 campus curve starts similarly 
but quickly flattens after a few iterations, stabilizing at 
approximately 0.03. This behavior implies that the search 
space may have reached a local minimum earlier, or 
the dataset characteristics for this campus yield less 
variation in error reduction. The plateau indicates that 
further iterations do not significantly improve the model's 
performance, suggesting that the initial parameter set 
for this campus might be closer to optimal from the 
beginning. Overall, the convergence trends show that 
SSA-ANN effectively minimizes MSE, with Campus 1 
achieving more significant improvements compared 
to Campus 2. This could be due to differences in 
environmental factors or data variability between 
the two campuses, influencing how SSA explores and 
exploits potential solutions.

Figure 6: Convergence curve for Case 1

Figure 7 presents a convergence curve for Case 2. For 
Case 2, the weekly prediction convergence curves for 
both campuses show a steady decline in Mean Squared 
Error (MSE) as the iterations progress. The Campus 2 
campus demonstrates a slightly faster reduction in MSE 
early on, stabilizing around iteration 19, indicating that 
the Salp Swarm Algorithm (SSA) quickly identified a 
near-optimal solution. Campus 1 campus, on the other 
hand, maintains a more gradual decline and stabilizes 
later around iteration 34. This difference in convergence 
behavior suggests that the dataset from Campus 2 
may have fewer complexities or variations, enabling 
faster optimization. Despite the slower reduction in 
MSE for Campus 1, both curves ultimately achieve low 
error values, confirming that the SSA-ANN combination 
effectively enhances prediction accuracy over weekly 
intervals.

The convergence curve for Case 3 is presented in Figure 
8. For Case 3, the monthly prediction results reveal a 
similar trend, though with more gradual improvement. 

Figure 7: Convergence curve for Case 2

Figure 8: Convergence curve for Case 3

The MSE for Campus 2 exhibits an early decrease and 
stabilizes around iteration 22, maintaining a consistently 
lower error compared to Campus 1. Campus 1 shows 
a clear downward trend, stabilizes later and at a 
slightly higher error rate. This slower convergence might 
indicate that the monthly data for Campus 1 has more 
variability, requiring more iterations for SSA to refine the 
ANN parameters. However, both campuses achieved 
near-optimal results by the final iterations, with Campus 
2 maintaining a marginally better performance. This 
highlights the SSA-ANN model's robustness in handling 
longer prediction horizons, though convergence speed 
and final error rates remain sensitive to site-specific data 
patterns.

The results in Table 2 present the optimized parameters 
for all case studies using the Salp Swarm Algorithm 
combined with Artificial Neural Networks (SSA-ANN). 
The table highlights the fine-tuned values for key ANN 
parameters, specifically H1 (first hidden layer neurons), 
H2 (second hidden layer neurons), Learning Rate (LR), 
and Momentum Rate (MR) that were determined 
through the iterative SSA optimization process. Across 
all cases (daily, weekly, and monthly predictions), the 
values of H1 and H2 show variation, indicating that 
different prediction horizons require different network 
architectures to balance model complexity and 
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performance. For example, daily predictions tend to 
have a larger number of neurons in the hidden layers 
to capture short-term fluctuations, while weekly and 
monthly cases typically require fewer neurons due to 
smoother data trends.

The Learning Rate (LR) values remain within a moderate 
range, ensuring a balance between convergence 
speed and model stability. A higher LR might speed 
up learning but risks overshooting the optimal solution, 
while a lower LR ensures steady, stable convergence. 
The Momentum Rate (MR) helps prevent the model 
from getting stuck in local minima, and the optimized 
values in Table 2 reflect this balance, providing enough 
inertia for the model to escape suboptimal points 
while maintaining steady progress toward the global 
minimum. The variation in parameters between Campus 
1 and Campus 2 campuses further supports the idea 
that site-specific data patterns influence ANN structure. 
For instance, Campus 2, with a more stable weather 
pattern, might achieve optimal results with fewer 
neurons, while Campus 1’s more fluctuating climate 
may require a more complex network. In summary, 
Table 2 demonstrates that SSA effectively tailors ANN 
configurations to each prediction scenario, ensuring 
lower MSE and higher accuracy. This adaptability 
is crucial when applying ANN models to diverse 
environments and prediction timeframes.

The testing results of SSA-ANN for campus 1 and 
campus 2 are presented in Figure 9 and Figure 10, 
respectively. These figures demonstrate strong predictive 
performance across all three cases: daily, weekly, and 
monthly predictions. Each plot compares the ANN 
outputs against the actual targets, accompanied by 
a linear fit line and a reference line (Y = T) representing 
perfect prediction. For Campus 1, the results show 
impressive accuracy across all cases. In Case 1 (daily 
prediction), the correlation coefficient (R = 0.98069) 
indicates an excellent fit, with data points closely 
following the linear fit line and minimal deviation. Case 
2 (weekly prediction) maintains a high correlation (R = 
0.97151), though a slight increase in spread is observed, 

reflecting the added challenge of predicting weekly 
trends. Case 3 (monthly prediction) yields a slightly lower 
correlation (R = 0.9634), with a more noticeable spread 
around the linear fit, which is expected as longer-term 
predictions introduce more variability. Despite this, the 
model continues to capture the overall trend effectively.

For Campus 2, the SSA-ANN model similarly shows strong 
performance. Case 1 (daily prediction) achieves R = 
0.96485, slightly lower than Campus 1’s daily results but 
still indicating high accuracy. The spread is modest, and 
the linear fit remains strong. Case 2 (weekly prediction) 
demonstrates consistency with R = 0.97029, showing 
that the model generalizes well to weekly data, with 
points remaining densely clustered around the fit line. 
In Case 3 (monthly prediction), the model maintains a 
robust correlation of R = 0.96268, similar to Campus 1’s 
performance. While the spread increases, the linear fit 
still captures the overall relationship accurately, proving 
the model’s stability.

Overall, the results across both campuses validate 
the effectiveness of the SSA-ANN approach. With R 
values consistently above 0.96 in all cases, the model 
demonstrates reliable predictive capability. Campus 1 
consistently achieves slightly better correlations, which 
may indicate more stable data or less environmental 
variability compared to Campus 2. 

The increasing spread from daily to monthly predictions 
reflects the natural challenge of long-term forecasting 
due to external influences, but the SSA-ANN model’s 
performance remains strong, showcasing its adaptability 
to different timescales and environments. Dai ly 
predictions consistently yield higher correlation 
coefficients and tighter clustering around the linear fit 
line. This is expected because daily data provides more 
granular information, allowing the ANN to adapt and 
adjust more frequently, leading to better performance. 
Weekly predictions, while still highly accurate, face 
greater challenges due to the reduced data frequency 
and the increased influence of unpredictable factors 
that SSA may not fully optimize within the ANN structure. 

Table 2: Parameters obtained using SSA-ANN for all cases
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Figure 9: Testing results of SSA-ANN for Campus 1

Figure 10: Testing results of SSA-ANN for Campus 2

In conclusion, SSA-ANN demonstrates strong predictive 
capabilities in both daily and weekly cases. Daily 
predictions outperform weekly ones in terms of 
correlation and data fit, reflecting the advantage of 
more frequent data inputs. Weekly predictions remain 
reliable, though with a slightly higher spread, which is 
reasonable given the longer prediction interval. The 
consistent performance across campuses and time 
scales validates the SSA-ANN model’s adaptability and 
robustness, making it a powerful tool for short-term and 
medium-term forecasting alike.

4. CONCLUSION

This paper offers a hybrid Artificial Neural Network (ANN) 
model that incorporates the Salp Swarm Algorithm 
(SSA) to improve the accuracy of photovoltaic (PV) 
power production prediction. Accurate prediction of 
PV generation in campuses brings several significant 
benefits. First, it supports better energy management 
by allowing campus facilities to balance supply and 
demand more efficiently, reducing reliance on grid 
electricity and lowering energy costs. This enables 
campuses to maximize self-consumption of solar 

power, minimizing excess energy wastage or the need 
for expensive energy storage solutions. Additionally, 
accurate forecasting helps improve the stabil ity 
of the local grid by providing reliable estimates of 
energy output, which is crucial when integrating 
renewable sources that are naturally intermittent. It also 
supports long-term sustainability goals by empowering 
campuses to track and optimize their renewable energy 
usage, contributing to carbon reduction initiatives. 
Furthermore, precise predictions enable more effective 
maintenance scheduling, as sudden drops in output 
can signal performance issues, allowing for proactive 
interventions that extend the lifespan of the PV system. 
Finally, accurate generation data enhances research 
and educational opportunities, providing real-world 
datasets for students and researchers to analyze 
energy systems, smart grids, and renewable integration 
strategies, fostering a more informed and energy-
conscious campus community. 

In this paper, the prediction of SSA-ANN is conducted 
using real data from two campuses, demonstrated that 
SSA-ANN effectively optimizes key ANN parameters, 
enhancing prediction performance. Daily predictions 
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exhibited higher accuracy, indicated by stronger 
correlation coefficients and tighter clustering around 
the regression line, while weekly predictions maintained 
commendable per formance despite increased 
data variability. The model’s consistent performance 
across both campuses highlights its robustness and 
adaptability, validating SSA-ANN as a reliable hybrid 
tool for complex prediction tasks.

Future improvements to the SSA-ANN model could further 
enhance its performance and versatility. Integrating SSA 
with other metaheuristic algorithms, such as Particle 
Swarm Optimization (PSO) or Genetic Algorithm (GA), 
may improve convergence speed and prevent the 
model from getting stuck in local minima. Additionally, 
dynamic parameter tuning, where learning rates and 
momentum coefficients adapt throughout the training 
process, could improve responsiveness to evolving data 
patterns. Incorporating external factors like weather 
conditions and operational schedules would enable 
the model to capture more complex relationships, 
leading to greater accuracy. Moreover, applying 
transfer learning by training the model on one campus 
and fine-tuning it for another could enhance scalability 
and efficiency, particularly for data-limited sites. Finally, 
deploying SSA-ANN in a real-time forecasting setup 
would allow continuous learning and adaptation to 
live data streams, ensuring more dynamic and resilient 
predictions. Future work will also explore benchmarking 
SSA-ANN against other hybrid optimization techniques 
such as ANN-PSO and ANN-GA to further validate 
the model’s optimization efficiency and comparative 
performance. By extending the SSA-ANN framework 
with these enhancements, future studies can push the 
boundaries of predictive accuracy and generalizability, 
making this approach applicable to a broader range 
of industries and scenarios. By extending the SSA-ANN 
framework with these enhancements, future studies 
can push the boundaries of predictive accuracy and 
generalizability, making this approach applicable to a 
broader range of industries and scenarios.
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