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ABSTRACT

With the increasing adoption of rooftop photovoltaic (PV) systems, accurate power output forecasting has
become essential for effective energy management and grid integration. This study proposes a hybrid Artificial
Neural Network (ANN) model optimized using the Salp Swarm Algorithm (SSA) to enhance prediction accuracy for
rooftop PV output. SSA was selected forits strong exploration and exploitation capabilities, which complement the
ANN’s learning strengths. Historical PV data from two university campuses in Malaysia, representing varied climatic
conditions, were used over a one-year period to ensure model robustness. Key input variables influencing PV output
were identified through correlation analysis, enabling more focused ANN training. SSA was used to optimize the
ANN’s initial weights and biases, accelerating convergence and improving accuracy. Across three test cases,
the SSA-ANN model achieved Mean Squared Error (MSE) values as low as 0.0155 and correlation coefficients (R)
up to 0.98069, significantly outperforming standalone ANN approaches. These results demonstrate the model's
effectiveness in improving PV forecasting accuracy, offering practical benefits for urban energy planning and
sustainable power systems.
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1. INTRODUCTION

The global fransition from fossil fuels to renewable
energy sources is accelerating, driven by concerns
over climate change, energy security, and rising costs
of conventional energy. In Malaysia, solar energy
is emerging as a key component of the country's
renewable energy sfrategy, leveraging the nation’s
abundant sunlight (Fernandez et al., 2024). The
rapid decline in photovoltaic (PV) panel costs and
advancements in energy conversion efficiency are
further propelling this shift. Solar PV systems, known for
their affordability, scalability, and ease of deployment,
now serve a wide range of applications, from large-
scale solar farms to decentralized rooftop installations
providing reliable, localized electricity to homes,
commercial buildings, and educational institufions.
Among these, rooftop PV systems are gaining popularity
due to their efficient use of existing structures, eliminating
the need for dedicated land, whichis a key advantage
in urban and institutional areas (Hassan et al., 2023).
University campuses serve as optimal settings for the
installation of rooftop photovoltaic systems. Universities,
as autonomous communities with varied energy
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requirements encompassing residential, academic, and
administrative loads, present a distinctive opporfunity
to model and enhance photovoltaic system efficiency.
Campuses frequently possess extensive rooftop
spaces ideal for solar systems and exhibit stable
energy consumpftion patterns, rendering them optimal
candidates for renewable energy implementation.
This infrastructure not only fulfills the university's energy
requirements but also functions as an active research
facility for the advancement of solar energy research
and energy management techniques (Maity et al.,
2024).

Photovoltaic systems operate by converfing sunlight
into electricity through semiconductor materials. Their
versatility supports installations ranging from residential
rooffops to large-scale power plants. Additionally,
they offer low maintenance, modularity, and high
scalability, making them suitable for both on-grid
and off-grid applications (Osman & Qureshi, 2025).
Hybrid systems, which combine on-grid and off-grid
features, are increasingly favored for their ability to
store energy in batteries while sfill connecting to the
main grid for backup supply (Falope et al., 2024).



However, PV systemsremain vulnerable to performance
fluctuations influenced by environmental factors
such as module material, temperature, shading, dust
accumulation, inverter efficiency, weather conditions,
and geographic location (Okonkwo et al., 2025).
Moreover, degradation effects like corrosion, micro-
cracks, and humidity-induced losses can furtherreduce
power output over time (Islam et al., 2024; Khan et al.,
2024). These challenges underscore the importance
of accurate output power forecasting fo optimize
energy management and grid reliability, especially in
campus environments where energy demand fluctuates
between peak academic hours and low-occupancy
periods during holidays and semester breaks. Rooftop
solar panels typically monocrystalline, polycrystalline,
or bifacial dominate distributed solar generation
worldwide, maximizing land use efficiency and
minimizing environmental disruption (Kewte & Kewte,
2023; Reagan et al., 2025). In Malaysia, unpredictable
weather patterns pose asignificant hurdle to consistent
energy output. Accurate forecasting models are crucial
fo mitigate this variability, ensuring a stable power
supply and reducing reliance on conventional energy
sources (Hasan et al., 2024). For universities, this becomes
even more essential, as unreliable energy supply could
disrupt research activities, essential campus operations,
and student accommodations. Effective predictions
allow for better grid balancing, preventing over-reliance
on backup systems and supporting Malaysia's long-term
sustainability goals (Kharrazi et al., 2020).

Artificial Intelligence (Al) techniques, particularly
Artificial Neural Networks (ANNs), have demonstrated
strong potential in modeling the nonlinear behavior
of PV systems under diverse environmental conditions
(Keddouda et al., 2023). ANNs, inspired by biological
neural networks, map complexinput-output relationships
through interconnected neurons, weights, and bias
adjustments. Backpropagation, one of the most
common fraining methods, iteratively refines weights to
minimize prediction errors (Zhang et al., 2025).

However, standard ANNs face challenges like slow
convergence, getfing frapped in local minima, and
overfitting when trained on volatile weather data.
Metaheuristic optimization algorithms, such as Genetic
Algorithms (GA) (Han & Sun, 2024) and Particle Swarm
Optimization (PSO) (Zoremsanga & Hussain, 2024)
have emerged as effective solutions o enhance ANN
performance by tuning inifial weights and biases.
Recent studies combining ANN with metaheuristics have
shown significantimprovementsin PV power prediction
accuracy (Hannan et al., 2021; Moreno et al., 2020).
Nevertheless, balancing exploration (global search)
and exploitation (localrefinement) remains a persistent
challenge in optimizing ANN parameters.

To address this, the Salp Swarm Algorithm (SSA) has

gained attention for its ability to dynamically balance
exploration and exploitation during optfimization
(Mirjalili et al., 2017). Inspired by the swarming behavior
of salps in ocean currents, SSA efficiently navigates the
search space to escape local minima and accelerate
convergence. This study proposes a novel hybrid SSA-
ANN model forrooftop PV power prediction, leveraging
SSA’'s adaptive capabilities to fine-tune ANN weights and
biases. The modelis trained and validated using historical
data from two university campuses representing
different geographical and meteorological conditions
fo ensure robustness. By using university campuses as
the testbed, this study not only enhances prediction
accuracy forcampus energy systems but also provides a
scalable, data-driven approach that can be replicated
in other educational insfitutions or urban environments
with similar energy profiles.

The significance of this study extends beyond improved
prediction accuracy. University campuses, as energy-
intensive microgrids, represent a strategic opportunity
for accelerating the adoption of renewable energy.
Accurate forecasting supports smarter energy planning,
helping campuses reduce operational costs, lower
carbon footprints, and improve energy self-sufficiency.
Moreover, the research strengthens the role of
universities as innovation hubs, infegrating sustainable
technologies into real-world systems while fraining
future engineers and energy managers to tackle global
energy challenges.

2. METHODOLOGY

The paper utilizes data collected from two university
campusesin Malaysia: Campus 1, located on Malaysia's
East Coast, and Campus 2, situated in the southern
region. These campuses were strategically selected
due to their operational rooffop photovoltaic (PV)
systems and distinct geographical locations, providing
a diverse dataset that captures varying climatic
conditions. The datasetincludes key parameters such as
Global Horizontal Irradiation, Date and Time, Ambient
Temperature, Wind Speed, PV Module Temperature,
and Average PV Output Power, all recorded at five-
minute intervals. Data for this study were collected from
1 February 2022 to 30 September 2023. Measurements
were recorded af 5-minute intervals daily, between 7:30
AM and 7:30 PM, to capture the full range of daylight
hours relevant for photovoltaic (PV) power generation.
This consistent data logging resulfed in 144 data points
per day, totaling 87,408 data points over the entire
collection period. The extensive dataset supports robust
fraining and evaluation of the arfificial neural network
(ANN) models for accurate PV output prediction. The
data from two campuses are used to evaluate rooftop
PV power production. In the first scenario, the Artificial
Neural Network (ANN) model is tfrained and fested on
a single day. The second scenario extends the testing
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period to one month. The third scenario involves a
more extensive training period of one year, followed
by a three-month testing phase. This multi-scenario
approach is designed to comprehensively assess the
model’'s performance across different training and
testing durations, ensuring the reliability and robustness
of the predictions.

Correlation analysis is a vital statistical fechnique
used to evaluate the relationship between input and
oufput variables, determining both the existence
and strength of these associations. This analysis helps
uncover patterns within the dataset, providing insights
info whether the relationships are advantageous or
detrimental. A positive correlation indicates that the
input and output variables increase together, while a
negative correlation implies that one variable increases
as the other decreases. To quantify these relationships,
this study employs the Pearson correlation coefficient
thatis widely used to measure the linear correlation. The
coefficient is calculated using the equation. (1).

= 2E-)Y-P m
VIE-R)2J(¥-Y)?

Where X is the input variables, Y is the output variables,
X is the mean of the input variables and ¥ is the mean
of the output variables.

Artificial Neural Networks (ANN) offer a powerful
approach for predicting rooftop photovoltaic (PV)
output power, especially when paired with supervised
learning techniques. The training process utilizes
the backpropagation algorithm, which iteratively
adjusts weights and biases across network layers
to enhance model performance. This algorithm
operates in two stages: first, it forwards inputs from the
input layer through the hidden layers to the output
layer; then, it backpropagates errors, refining the
connections to minimize prediction inaccuracies.
The ANN architecture consists of input, hidden, and
output layers, incorporating key variables such as solar
irradiance, ambient temperature, and historical PV
output data to generate accurate predictions.

The ANN model was configured and tested multiple
fimes to determine the optimal setup. A two-hidden-
layer architecture was employed, with the number of
neurons in each hidden layer varied heuristically from
1 to 20. Additionally, the learning rate and momentum
rate were adjusted between 0 and 1 to explore
different training behaviors and improve convergence.
Simulations were conducted for all case studies at both
campuses to ensure the robustness and generalizability
of the model across different climate conditions. The
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model’'s performance is assessed using the Mean
Square Error (MSE), a standard metric that measures
the average squared difference between predicted
and actual outputs. The MSE is calculated using the
equation. (2).

MSE = 37, (¥, — 1)? (2)

where, MSE is mean squared error, n is the number
of data points, Y, is the observed values and ¥, is the
predicted values.

The hybridization of the Salp Swarm Algorithm (SSA)
with Artificial Neural Networks (ANN) is proposed to
enhance the accuracy and efficiency of rooftop
photovoltaic (PV) power output predictions. SSA, a
bio-inspired metaheuristic algorithm that mimics the
swarming behavior of salps in the ocean, is employed
to optimize the weights and biases of the ANN, thereby
improving its predictive performance. Traditional
fraining methods, such as gradient descent, often suffer
from slow convergence and the risk of getting tfrapped
in local minima. The SSA-ANN framework overcomes
these limitations by leveraging SSA's strong global search
capability, ensuring optimal weight selection for more
accurate and robust predictions.

The hybrid approach follows a structured optimization
process, asillustratedin Figure 1. First, the SSA parameters,
including population size and maximum iterations, are
inifialized to guide the search for optimal solutions.
Simultaneously, ANN parameters such as the number
of neuronsin each layer, learning rate, and momentum
constant are set fo ensure compatibility with the inifial
network configuratfion. The optimization process begins
with SSA randomly generating initial positions of salps,
representing candidate solutions for the ANN's weight
and bias values. An objective function, typically based
on the Mean Square Error (MSE), evaluates the fitness of
each solufion by measuring the discrepancy between
predicted and actual PV output. During the iterative
optimization process, the leader salp directs the
swarm's movement based on the best-found solution,
while follower salps adjust their positions dynamically
to balance exploration and exploitation. This adaptive
movement prevents premature convergence and
ensures the discovery of an optimal set of ANN weights.
The optfimization continues until the convergence
criteria are met, either when the objective function
stabilizes or the maximum iterafion count is reached.
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Figure 1: Flowchart of SSA-ANN

The final optimized weights and biases are then
applied to the ANN model, significantly improving its
predictive accuracy. This hybrid SSA-ANN approach
not only enhances ANN fraining efficiency but also
ensures reliable PV power predictions across varying
environmental condifions. Future enhancements could
include adaptive SSA parameter funing, infegration
with other metaheuristic algorithms, or application
fo multi-objective optimization scenarios for further
performance improvements.

3. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the
proposed hybrid SSA-ANN model's performance in
predicting rooftop photovoltaic (PV) output power. The
results are evaluated based on different training and
festing scenarios, considering diverse environmental
condifions from two distinct campuses. Key performance
indicators, including Mean Square Error (MSE) and
correlation analysis, are used to assess prediction
accuracy and model reliability. Comparisons are
made between the baseline ANN model and the SSA-
optimized ANN tfo highlight improvements in prediction
precision and convergence efficiency. The discussion
interprets the results, focusing on how SSA optimization

enhances ANN's ability to generalize under varying
climatic conditions, ensuring robust and accurate PV
power forecasts. All tables and figures must have a
corresponding caption.

A heatmap in Figure 2 was generated to evaluate the
strength of the linear correlation between environmental
variables and the average PV output power for
Campus 1. The correlation coefficientsrange from 0 (no
correlation) to 1 (perfect correlation), as indicated by
the color bar on the right side of the figure.

Feature Correlating with Average Output Power (kW)

Average Output Power (kW)

Solar Irradiance (W/mz2)

PV Module Temperature (°C)

Ambient Temperature (*C) - 0.62

wind Speed (my/s) - 0.57

Average Output Power (KW)

Figure 2: Results of correlation analysis for Campus 1

The feature most strongly correlated with the average
output power is Solar Irradiance (W/m2), with a
coefficient of 0.95. Thisresult is expected and consistent
with established PV performance models, as solar
irradiance directly influences the amount of energy that
can be harvested by the photovoltaic panels. It confirms
that irradiance is the most critical input feature when
predicting PV output using artificial neural networks
or any other machine learning-based models. PV
Module Temperature (°C) also shows a strong positive
correlation of 0.86. While an increase in temperature
generally reduces the efficiency of PV modules due to
thermal losses, the high correlation suggests that the
temperature rise is largely driven by high irradiance
conditions—hence, it indirectly correlates with higher
power output. This underscores the importance of
including module temperature as a secondary feature
in predictive models. Ambient Temperature (°C) and
Wind Speed (m/s) show moderate correlations of 0.62
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and 0.57, respectively. These features may influence
system performance by affecting the operating
temperature of the PV modules (e.g., wind providing
a cooling effect), but their relatively lower correlation
indicates they are not as directly impactful asirradiance
or module temperature. Nevertheless, their inclusion
may help improve the model’s ability to generalize
under different environmental conditions. The perfect
correlation value of 1.0 for Average Output Power (kW)
with ifself serves as a reference and validation of the
heatmap structure.

The heatmap for Campus 2 in Figure 3 presents the
Pearson correlatfion coefficients between environmental
parameters and the average output power (kW) of the
PV system. This analysis aims to identify the most relevant
features for predicting PV performance in a hybrid ANN
model. The most influential feature, as expected, is
Solar Irradiance (W/m?), showing a very strong positive
correlation of 0.97 with average output power. This aligns
with physical principles, as solar irradiance represents
the energy input directly converted to electrical power
by the PV system.

Feature Correlating with Average Qutput Power (kW)

Average Output Power (kW)

Solar Irradiance (wW/m2)

PV Module Temperature (°C)

Ambient Temperature (°C) -

wind Speed (m/s)

Average Output Power (kW)

Figure 3: Results of correlation analysis for Campus 2

The high correlation reinforces the importance of
irradiance as the primary driver of PV outfput and its
essential role as a key input feature in the prediction
model. PV Module Temperature (°C) also demonstrates
a strong positive correlation of 0.86. This indicates that
as module temperaturerises, the average output power
also tfends to increase. However, it's important to note
that while irradiance typically causes this increase in
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temperature, highertemperatures canlead to efficiency
losses in PV modules. Despite this, the positive correlation
highlights the tfemperature’s relevance in model training,
particularly in environments where irradiance and heat
levels closely track each other. Ambient Temperature
(°C) shows a moderate correlation of 0.64, suggesting it
confributes to PV performance but is not as dominant.
It may influence the module temperature indirectly
and can affect cooling rates and system efficiency,
thus playing a supporfing role in prediction accuracy.
The most notable deviation from Campus 1 is observed
in Wind Speed (m/s), which exhibits a very weak
correlation of 0.049 with the average output power. This
near-zero correlation indicates that wind speed has a
negligible linear influence on power outputin Campus
2's environment. While wind can help cool PV modules
and potentially improve efficiency, this effect appears
to be minimal or inconsistent in this dataset. The self-
correlation of 1.0 for average output power acts as a
benchmark reference for comparison.

The study of both campuses consistently identifies solar
irradiation as the predominant factor, exhibiting a
robust positive association with electricity generation.
Conversely, ambient temperature and photovoltaic
module temperature demonstrated fewer correlations,
suggesting that while temperature influences
performance, particularly via module heating, the
effects are less predictable and vary by location. Wind
speed, while aiding in module cooling, demonstrated
aninconsequential association and was hence omitted
from further simulations. The study discovered three
essential factors for forecasting photovoltaic output:
ambient temperature, solarirradiation, and photovoltaic
module temperature. The findings emphasize the
necessity of prioritizing sun irradiance as the principal
input for ANN models, whereas temperature-related
variables operate as supplementary factors to account
for performance variations. This methodology balances
model complexity with predictive accuracy, ensuring
flexibility o various geographical and climatic situations,
asevidencedinthe Campus 1 and Campus 2 campuses.

The heuristic approach to configuring the Artificial
Neural Network (ANN) was conducted systematically
by first determining the optimal number of neurons
in the first hidden layer (H1). During this stage, other
parameters, including the second hidden layer (H2),
learning rate (LR) and momentum constant (MC)
were randomly selected to allow a focus on fine-
tuning H1. Once the best-performing H1 configuration
was identified, the ANN was rerun multiple times to
optimize H2, following the same heuristic trial-and-error
approach. After identifying the optimal hidden layers,
the process wasrepeated to tune the learning rate and
momentum constant, ensuring the model achieved
both fast convergence and stability. This iterative



process resulted in progressively lower error rates, as
seen in Figure 4 and Figure 5 for Campus 1.
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Figure 4: Best number of neurons for Case 1 (daily prediction)
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Figure 5: Best number of learning rate and momentum
constant for Case 1 (daily prediction)

These figures present the results of the heuristic method
for daily prediction in Case 1. The fluctuations in HIl
reflect the model’s sensitivity to initial configurations,
highlighting the importance of careful funing. H2, in
comparison, showed more stable behavior, suggesting
itsrole inrefining the network’s performance rather than
driving major changes. The gradual reduction in error
across iterations confirms that the heuristic approach
successfully narrowed down the best combination
of parameters, balancing model complexity and
predictive accuracy. This method, while fime-intensive,
ensures a tailored network configuration that adapts
to the specific characteristics of the dataset, leading
tfo more reliable photovoltaic (PV) power output
predictions.

Similar analysis is also carried out using other prediction
categories, such as weekly prediction (Case 2) and
monthly prediction (Case 3) for Campus 2. The best
configuration for all cases is tabulated in Table 1.
For Campus 1, the artificial neural network (ANN)
performance varied noticeably across different
parameter settings. Case 2, with 10 neurons in H1, 4 in
H2, alearning rate of 0.1, and a momentum coefficient

of 0.8, achieved the lowest mean squared error (MSE)
of 0.0163. This indicates that moderate network size
and a conservative learning rate confributed to stable
learning and effective generalization. In confrast,
Case 1 with a larger architecture (H1=18, H2=10) and
a higher learning rate (0.2) produced a higher MSE
of 0.0281, suggesting possible overfitting or instability.
Case 3, with a smaller network and a low learning rate
(0.001), performed better than Case 1 but was not as
optimal as Case 2. For Campus 2, the best result was
obtained in Case 2, where a higher learning rate of
1.0 combined with a moderately sized H1 (10 neurons)
and a small H2 (2 neurons) yielded the lowest MSE of
0.0157. Interestingly, this configuration outperformed
the smaller networks in Cases 1 and 3, both of which
used HI1=3, H2=2 and a learning rate of 0.5, resulfing
in higher MSEs of 0.0312 and 0.0194, respectively. This
suggests that the dataset characteristics for Campus
2 allowed the ANN fo benefit from a more aggressive
learning strategy without sacrificing accuracy. Overall,
these results highlight that ANN parameters, specifically
the number of hidden neurons, learning rate, and
momentum coefficient, play a critical role in achieving
accurate PV output predictions. Proper tuning of these
parameters is essential for model performance, and
opfimal settings may vary depending on the data
characteristics of each location.

Table 1: Results of using ANN for all cases

Campus Case H1 H2 LR MC MSE
1 18 10 0.2 0.8 0.0281
Campus 1 2 10 4 0.1 0.8 0.0163
3 5 5 0001 0.3 0.0208
1 3 2 0.5 0.7 0.0312
Campus 2 2 10 2 1 0.8 0.0157
3 3 2 0.5 0.7 0.0196

The integration of the Salp Swarm Algorithm (SSA) with
Artificial Neural Networks (ANN) plays a significant role
in enhancing prediction accuracy. SSA optimizes key
ANN parameters, including the number of neuronsin the
first and second hidden layers (H1 and H2), learning rate
(LR), and momentum constant (MC). For this study, SSA
was configured with 20 search agents and 50 iterations.
The primary objective of the SSA-ANN hybrid model is
to minimize the Mean Squared Error (MSE) during ANN
training and prediction.

The convergence curve for Case 1 in Figure 6,
representing daily prediction performance using SSA-
ANN at Campus 1 and Campus 2, demonstrates the
effectiveness of the SSA in optimizing ANN parameters.
For Case 1, the curve shows a consistent and steady
decline in MSE across the 50 iterations, reflecting an
efficient search for the optimal configuration. The MSE
starts around 0.032 and gradually decreases, eventually
stabilizing just below 0.024. This steady reduction
indicates that SSA continuously refines the ANN's weights
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and biases, improving prediction accuracy with each
iteration. Notably, the final sharp drop near the end
suggests that SSA discovered a better set of parameters
in the later stages, reinforcing its exploratory strength.
In contrast, the Campus 2 campus curve starts similarly
but quickly flattens after a few iterations, stabilizing at
approximately 0.03. This behaviorimplies that the search
space may have reached a local minimum earlier, or
the dataset characteristics for this campus yield less
variation in error reduction. The plateau indicates that
furtheriterations do not significantly improve the model's
performance, suggesting that the inifial parameter set
for this campus might be closer to optimal from the
beginning. Overall, the convergence trends show that
SSA-ANN effectively minimizes MSE, with Campus 1
achieving more significant improvements compared
to Campus 2. This could be due to differences in
environmental factors or data variability between
the two campuses, influencing how SSA explores and
exploits potential solutfions.

w— Campus 1
0.032
\\ s CAMpus 2
0.03
w
[%2]
S 0028
0.026
0.024
1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49
Number of Iteration

Figure 6: Convergence curve for Case 1

Figure 7 presents a convergence curve for Case 2. For
Case 2, the weekly prediction convergence curves for
both campuses show a steady decline in Mean Squared
Error (MSE) as the iterations progress. The Campus 2
campus demonstrates a slightly faster reduction in MSE
early on, stabilizing around iteration 19, indicating that
the Salp Swarm Algorithm (SSA) quickly identified a
near-optimal solution. Campus 1 campus, on the other
hand, maintains a more gradual decline and stabilizes
later around iteration 34. This difference in convergence
behavior suggests that the dataset from Campus 2
may have fewer complexities or variations, enabling
faster optimization. Despite the slower reduction in
MSE for Campus 1, both curves ultimately achieve low
error values, confirming that the SSA-ANN combination
effectively enhances prediction accuracy over weekly
intervals.

The convergence curve for Case 3 is presented in Figure

8. For Case 3, the monthly prediction results reveal a
similar trend, though with more gradual improvement.
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Figure 7: Convergence curve for Case 2

The MSE for Campus 2 exhibits an early decrease and
stabilizes around iteration 22, maintaining a consistently
lower error compared to Campus 1. Campus 1 shows
a clear downward trend, stabilizes later and at a
slightly higher errorrate. This slower convergence might
indicate that the monthly data for Campus 1 has more
variability, requiring more iterations for SSA to refine the
ANN parameters. However, both campuses achieved
near-optimalresults by the final iterations, with Campus
2 maintaining a marginally better performance. This
highlights the SSA-ANN model's robustness in handling
longer prediction horizons, though convergence speed
and final error rates remain sensitive to site-specific data
patterns.

s Campus 1

0.021 s CAMPpUS 2

—

0.0205

0.02

MSE

0.0195

0.019

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49
Number of Iteration

Figure 8: Convergence curve for Case 3

The results in Table 2 present the optimized parameters
for all case studies using the Salp Swarm Algorithm
combined with Artificial Neural Networks (SSA-ANN).
The table highlights the fine-tuned values for key ANN
parameters, specifically H1 (first hidden layer neurons),
H2 (second hidden layer neurons), Learning Rate (LR),
and Momentum Rate (MR) that were determined
through the iterative SSA optimization process. Across
all cases (daily, weekly, and monthly predictions), the
values of H1 and H2 show variation, indicating that
different prediction horizons require different network
architectures to balance model complexity and



performance. For example, daily predictions tend to
have a larger number of neurons in the hidden layers
to capture short-term fluctuations, while weekly and
monthly cases typically require fewer neurons due to
smoother data trends.

The Learning Rate (LR) values remain within a moderate
range, ensuring a balance between convergence
speed and model stability. A higher LR might speed
up learning but risks overshooting the optimal solution,
while a lower LR ensures steady, stable convergence.
The Momentum Rate (MR) helps prevent the model
from geftting stuck in local minima, and the optfimized
valuesin Table 2 reflect this balance, providing enough
inertia for the model to escape suboptimal points
while maintaining steady progress toward the global
minimum. The variation in parameters between Campus
1 and Campus 2 campuses further supports the idea
that site-specific data patternsinfluence ANN structure.
For instance, Campus 2, with a more stable weather
pattern, might achieve optfimal results with fewer
neurons, while Campus 1's more fluctuating climate
may require a more complex network. In summary,
Table 2 demonstrates that SSA effectively tailors ANN
configurations to each prediction scenario, ensuring
lower MSE and higher accuracy. This adaptability
is crucial when applying ANN models to diverse
environments and prediction timeframes.

The testing results of SSA-ANN for campus 1 and
campus 2 are presented in Figure 9 and Figure 10,
respectively. These figures demonstrate strong predictive
performance across all three cases: daily, weekly, and
monthly predictions. Each plot compares the ANN
outputs against the actual targets, accompanied by
alinear fit line and a reference line (Y =T) representing
perfect prediction. For Campus 1, the results show
impressive accuracy across all cases. In Case 1 (daily
prediction), the correlation coefficient (R = 0.98069)
indicates an excellent fit, with data points closely
following the linear fit line and minimal deviation. Case
2 (weekly prediction) maintains a high correlation (R =
0.97151), though a slight increase in spread is observed,

reflecting the added challenge of predicting weekly
frends. Case 3 (monthly prediction) yields a slightly lower
correlation (R =0.9634), with a more noticeable spread
around the linear fit, which is expected as longer-term
predictions infroduce more variability. Despite this, the
model continues to capture the overall frend effectively.

For Campus 2, the SSA-ANN model similarly shows strong
performance. Case 1 (daily prediction) achieves R =
0.96485, slightly lower than Campus 1's daily results but
stillindicating high accuracy. The spread is modest, and
the linear fit remains strong. Case 2 (weekly prediction)
demonstrates consistency with R = 0.97029, showing
that the model generalizes well to weekly data, with
points remaining densely clustered around the fit line.
In Case 3 (monthly prediction), the model maintains a
robust correlation of R = 0.96268, similar to Campus 1's
performance. While the spread increases, the linear fit
still captures the overall relationship accurately, proving
the model’s stability.

Overall, the results across both campuses validate
the effectiveness of the SSA-ANN approach. With R
values consistently above 0.96 in all cases, the model
demonstrates reliable predictive capability. Campus 1
consistently achieves slightly better correlations, which
may indicate more stable data or less environmental
variability compared to Campus 2.

The increasing spread from daily to monthly predictions
reflects the natural challenge of long-tferm forecasting
due to external influences, but the SSA-ANN model’s
performance remains strong, showcasing its adaptability
to different timescales and environments. Daily
predictions consistently yield higher correlation
coefficients and tighter clustering around the linear fit
line. Thisis expected because daily data provides more
granular information, allowing the ANN to adapt and
adjust more frequently, leading to better performance.
Weekly predictions, while still highly accurate, face
greater challenges due to the reduced data frequency
and the increased influence of unpredictable factors
that SSA may not fully optimize within the ANN structure.

Table 2: Parameters obtained using SSA-ANN for all cases

Campus Case H1 H2 LR MC MSE R
1 14 1 0.9992 0.5951 0.0195 0.98069
Campus 1 2 3 8 0.2564 0.7404 0.0162 0.97151
3 2 1 0.5941 0.5888 0.0206 0.9634
1 20 1 0.9997 0.1002 0.0296 0.96485
Campus 2 2 9 2 06495 0.9942 0.0155 0.97029
3 2 11 0.9357 0285 0.0195 0.96268
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Figure 9: Testing results of SSA-ANN for Campus |
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Figure 10: Testing results of SSA-ANN for Campus 2

In conclusion, SSA-ANN demonstrates strong predictive
capabilities in both daily and weekly cases. Daily
predictions outperform weekly ones in terms of
correlafion and data fit, reflecting the advantage of
more frequent data inputs. Weekly predictions remain
reliable, though with a slightly higher spread, which is
reasonable given the longer prediction interval. The
consistent performance across campuses and fime
scales validates the SSA-ANN model’s adaptability and
robustness, making it a powerful fool for short-term and
medium-term forecasting alike.

4. CONCLUSION

This paper offers a hybrid Artificial Neural Network (ANN)
model that incorporates the Salp Swarm Algorithm
(SSA) to improve the accuracy of photovoltaic (PV)
power production prediction. Accurate prediction of
PV generation in campuses brings several significant
benefits. First, it supports better energy management
by allowing campus facilities to balance supply and
demand more efficiently, reducing reliance on grid
electricity and lowering energy costs. This enables
campuses to maximize self-consumption of solar
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power, minimizing excess energy wastage or the need
for expensive energy storage solutions. Additionally,
accurate forecasting helps improve the stability
of the local grid by providing reliable estimates of
energy oufput, which is crucial when integrating
renewable sources that are naturally infermittent. It also
supports long-term sustainability goals by empowering
campuses fo frack and optimize theirrenewable energy
usage, contributing tfo carbon reduction initiatives.
Furthermore, precise predictions enable more effective
maintfenance scheduling, as sudden drops in output
can signal performance issues, allowing for proactive
interventions that extend the lifespan of the PV system.
Finally, accurate generation data enhances research
and educational opportunities, providing real-world
datasets for students and researchers to analyze
energy systems, smart grids, and renewable infegration
strategies, fostering a more informed and energy-
CONsSCious campus community.

In this paper, the prediction of SSA-ANN is conducted
using real datfa from two campuses, demonstrated that
SSA-ANN effectively optimizes key ANN parameters,
enhancing prediction performance. Daily predictions



exhibited higher accuracy, indicated by stronger
correlation coefficients and tighter clustering around
the regression line, while weekly predictions maintained
commendable performance despite increased
data variability. The model's consistent performance
across both campuses highlights its robustness and
adaptability, validating SSA-ANN as a reliable hybrid
tool for complex prediction tasks.

Future improvements to the SSA-ANN model could further
enhance its performance and versatility. Infegrating SSA
with other metaheuristic algorithms, such as Partficle
Swarm Optimization (PSO) or Genetic Algorithm (GA),
may improve convergence speed and prevent the
model from getting stuck in local minima. Additionally,
dynamic parameter tfuning, where learning rates and
momenftum coefficients adapt throughout the training
process, could improve responsiveness to evolving data
patterns. Incorporating external factors like weather
conditions and operational schedules would enable
the model to capture more complex relationships,
leading fo greater accuracy. Moreover, applying
fransfer learning by training the model on one campus
and fine-tuning it for another could enhance scalability
and efficiency, particularly for data-limited sites. Finally,
deploying SSA-ANN in a real-tfime forecasting setup
would allow continuous learning and adaptation to
live data streams, ensuring more dynamic and resilient
predictions. Future work will also explore benchmarking
SSA-ANN against other hybrid optimization techniques
such as ANN-PSO and ANN-GA fo further validate
the model's optimization efficiency and comparative
performance. By extending the SSA-ANN framework
with these enhancements, future studies can push the
boundaries of predictive accuracy and generalizability,
making this approach applicable to a broader range
of industries and scenarios. By extending the SSA-ANN
framework with these enhancements, future studies
can push the boundaries of predictive accuracy and
generalizability, making this approach applicable to a
broader range of industries and scenarios.
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