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ABSTRACT 

 

 

This thesis presents an enhanced Direct Torque Control (DTC) strategy for three-phase 
induction motors aimed at improving dynamic torque control performance in high-speed 
operations by modifying the stator flux locus. DTC is widely adopted in industrial 
applications due to its simple structure and fast torque response. However, it suffers from 
notable limitations such as high torque ripple and inadequate torque control under high-
speed conditions. These drawbacks are primarily due to the use of hysteresis controllers and 
the limitation imposed by a circular stator flux locus, which restricts the angular frequency 
of the stator flux vector and degrades the ability to maintain the load angle, thus reducing 
torque control effectiveness at high speeds. To overcome the poor torque dynamic control 
performance at high speeds, this research proposes a simple modification of the stator flux 
locus from a circular into a hexagonal by adjusting the flux hysteresis bandwidth with an 
appropriate bandwidth. A hybrid control of flux locus is proposed where the hexagonal flux 
locus is controlled during the dynamic conditions (acceleration and a sudden large torque 
demands), while the circular flux locus is controlled during steady-state conditions (constant 
speed and torque demands). By modifying the flux locus into a hexagonal shape, the angular 
velocity of the stator flux vector can be increased beyond its conventional limit, thereby 
maintaining the load angle and hence the motor torque at high speeds. This approach also 
promotes the application of the most optimal voltage vectors (the voltage vectors that have 
the largest tangential component) to the stator flux vector are frequently applied and this 
enables the transition of phase voltages from a PWM to almost a six-step voltage in 
satisfying the torque demand, during acceleration mode. On the other hand, the flux locus 
transforms back to a circular locus which retains lower current harmonic distortions when 
the speed reaches to its demand (steady-state condition). The hybrid flux locus control 
strategy is adopted in the simple DTC structure where the mechanism to modify the flux 
locus is enabled when the DTC applied the hexagonal` bandwidth and detects a dynamic 
condition when a large speed error is detected. Simulation and experimental results confirm 
performance gains, including a 31.25% faster dynamic response, elimination of steady-state 
speed error by 3.57%, and a 16.7% reduction in steady-state operating current. The benefit 
of this research is the improvements can be achieved without the use of complex flux 
weakening and space vector modulation (SVM) strategy, making the approach a practical 
and scalable solution for high-performance industrial drives and electric vehicle 
applications. 
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PENGUBAHSUAIAN LOKUS FLUKS STATOR UNTUK PENAMBAHBAIKAN 
KAWALAN TORK DALAM MOTOR ARUHAN BERKELAJUAN TINGGI 

 

ABSTRAK 

 

Tesis ini membentangkan strategi Kawalan Torsi Langsung (DTC) yang dipertingkat untuk 
motor aruhan tiga fasa yang bertujuan meningkatkan prestasi kawalan torsi dinamik dalam 
operasi berkelajuan tinggi melalui pengubahsuaian lokus fluks stator. DTC digunakan 
secara meluas dalam aplikasi industri disebabkan oleh strukturnya yang ringkas dan tindak 
balas torsi yang pantas. Walau bagaimanapun, ia mempunyai batasan ketara seperti riak 
torsi yang tinggi dan kawalan torsi yang tidak mencukupi di bawah keadaan kelajuan tinggi. 
Kelemahan ini berpunca daripada penggunaan pengawal histeresis dan batasan yang 
dikenakan oleh lokus fluks stator bulat, yang menyekat frekuensi sudut vektor fluks stator 
dan mengurangkan keupayaan untuk mengekalkan sudut beban, seterusnya mengurangkan 
keberkesanan kawalan torsi pada kelajuan tinggi. Untuk mengatasi prestasi kawalan torsi 
dinamik yang lemah pada kelajuan tinggi, penyelidikan ini mencadangkan pengubahsuaian 
mudah lokus fluks stator daripada bulat kepada heksagon dengan melaraskan lebar jalur 
histeresis fluks dengan lebar jalur yang sesuai. Kawalan hibrid lokus fluks dicadangkan di 
mana lokus fluks heksagon dikawal semasa keadaan dinamik (contohnya, pecutan dan 
permintaan torsi besar secara tiba-tiba), manakala lokus fluks bulat dikawal semasa 
keadaan mantap (contohnya, kelajuan malar dan permintaan torsi). Dengan mengubahsuai 
lokus fluks kepada bentuk heksagon, halaju sudut vektor fluks stator boleh ditingkatkan 
melebihi had konvensionalnya, seterusnya mengekalkan sudut beban dan dengan itu torsi 
motor pada kelajuan tinggi. Pendekatan ini juga menggalakkan aplikasi vektor voltan paling 
optimum (iaitu vektor voltan yang mempunyai komponen tangen terbesar) kepada vektor 
fluks stator digunakan dengan kerap dan ini membolehkan peralihan voltan fasa daripada 
PWM kepada voltan hampir enam langkah dalam memenuhi permintaan torsi, semasa mod 
pecutan. Sebaliknya, lokus fluks berubah kembali kepada lokus bulat yang mengekalkan 
distorsi harmonik arus yang lebih rendah apabila kelajuan mencapai permintaannya (iaitu 
keadaan mantap). Strategi kawalan lokus fluks hibrid digunakan dalam struktur DTC 
ringkas di mana mekanisme untuk mengubahsuai lokus fluks diaktifkan apabila DTC 
menggunakan lebar jalur hexagonal dan mengesan keadaan dinamik apabila ralat kelajuan 
melebihi dikesan. Keputusan simulasi dan eksperimen mengesahkan peningkatan prestasi, 
termasuk tindak balas dinamik 31.25% lebih pantas, penghapusan ralat kelajuan keadaan 
mantap sebanyak 3.57%, dan pengurangan 16.7% dalam arus operasi keadaan mantap. 
Manfaat penyelidikan ini ialah penambahbaikan boleh dicapai tanpa menggunakan strategi 
pelemahan fluks dan modulasi vektor angkasa (SVM) yang kompleks, menjadikan 
pendekatan ini sebagai penyelesaian praktikal dan skalabel untuk pemacu industri 
berprestasi tinggi dan aplikasi kenderaan elektrik. 
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