

اونيفرسيتي تيكنيكال مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Electrical Engineering Technology

HYBRID STATOR FLUX LOCUS STRATEGY FOR ENHANCING
TORQUE CONTROL IN HIGH-SPEED INDUCTION MOTORS
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Syed Abrar Bin Syed Ahmad Zawawi

Master of Science in Electrical Engineering

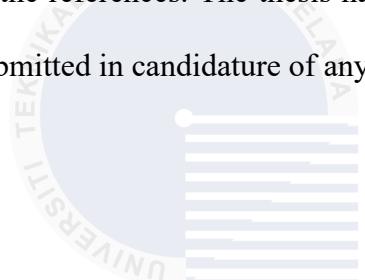
2025

**HYBRID STATOR FLUX LOCUS STRATEGY FOR ENHANCING TORQUE
CONTROL IN HIGH-SPEED INDUCTION MOTORS**

SYED ABRAR BIN SYED AHMAD ZAWAWI

A thesis submitted
in fulfillment of the requirements for the degree of
Master of Science in Electrical Engineering

اویونسیتی تکنیکال ملیسیا ملاک


UNIVERSITI TEKNIKAL MALAYSIA MELAKA
Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2025

DECLARATION

I declare that this thesis entitled “Hybrid Stator Flux Locus Strategy For Enhancing Torque Control In High-Speed Induction Motors “ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

أونیورسیتی تکنیکال ملاکا Signature :

Name : Syed Abrar Bin Syed Ahmad Zawawi
UNIVERSITY TEKNIKAL MALAYSIA MELAKA

Date : 18 June 2025

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electrical Engineering

Signature
Supervisor Name
Date

:
: Dr. Auzani Bin Jidin
: 18 June 2025

جامعة ملاكا التقنية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

I would like to express my deepest appreciation and heartfelt gratitude to my beloved family my father, Syed Ahmad Zawawi, my mother, Hashida, and my siblings for their unwavering financial and emotional support throughout the course of my master's studies at Universiti Teknikal Malaysia Melaka (UTeM). I am also sincerely thankful to my dear friends for their encouragement, assistance, and contributions to this project. Their support has been invaluable, and this achievement would not have been possible without them. Thank you.

اویونسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

This thesis presents an enhanced Direct Torque Control (DTC) strategy for three-phase induction motors aimed at improving dynamic torque control performance in high-speed operations by modifying the stator flux locus. DTC is widely adopted in industrial applications due to its simple structure and fast torque response. However, it suffers from notable limitations such as high torque ripple and inadequate torque control under high-speed conditions. These drawbacks are primarily due to the use of hysteresis controllers and the limitation imposed by a circular stator flux locus, which restricts the angular frequency of the stator flux vector and degrades the ability to maintain the load angle, thus reducing torque control effectiveness at high speeds. To overcome the poor torque dynamic control performance at high speeds, this research proposes a simple modification of the stator flux locus from a circular into a hexagonal by adjusting the flux hysteresis bandwidth with an appropriate bandwidth. A hybrid control of flux locus is proposed where the hexagonal flux locus is controlled during the dynamic conditions (acceleration and a sudden large torque demands), while the circular flux locus is controlled during steady-state conditions (constant speed and torque demands). By modifying the flux locus into a hexagonal shape, the angular velocity of the stator flux vector can be increased beyond its conventional limit, thereby maintaining the load angle and hence the motor torque at high speeds. This approach also promotes the application of the most optimal voltage vectors (the voltage vectors that have the largest tangential component) to the stator flux vector are frequently applied and this enables the transition of phase voltages from a PWM to almost a six-step voltage in satisfying the torque demand, during acceleration mode. On the other hand, the flux locus transforms back to a circular locus which retains lower current harmonic distortions when the speed reaches to its demand (steady-state condition). The hybrid flux locus control strategy is adopted in the simple DTC structure where the mechanism to modify the flux locus is enabled when the DTC applied the hexagonal` bandwidth and detects a dynamic condition when a large speed error is detected. Simulation and experimental results confirm performance gains, including a 31.25% faster dynamic response, elimination of steady-state speed error by 3.57%, and a 16.7% reduction in steady-state operating current. The benefit of this research is the improvements can be achieved without the use of complex flux weakening and space vector modulation (SVM) strategy, making the approach a practical and scalable solution for high-performance industrial drives and electric vehicle applications.

**PENGUBAHSUAIAN LOKUS FLUKS STATOR UNTUK PENAMBAHBAIKAN
KAWALAN TORK DALAM MOTOR ARUHAN BERKELAJUAN TINGGI**

ABSTRAK

Tesis ini membentangkan strategi Kawalan Torsi Langsung (DTC) yang dipertingkat untuk motor aruhan tiga fasa yang bertujuan meningkatkan prestasi kawalan torsi dinamik dalam operasi berkelajuhan tinggi melalui pengubahsuaihan lokus fluks stator. DTC digunakan secara meluas dalam aplikasi industri disebabkan oleh strukturnya yang ringkas dan tindak balas torsi yang pantas. Walau bagaimanapun, ia mempunyai batasan ketara seperti riak torsi yang tinggi dan kawalan torsi yang tidak mencukupi di bawah keadaan kelajuhan tinggi. Kelemahan ini berpunca daripada penggunaan pengawal histeresis dan batasan yang dikenakan oleh lokus fluks stator bulat, yang menyekat frekuensi sudut vektor fluks stator dan mengurangkan keupayaan untuk mengekalkan sudut beban, seterusnya mengurangkan keberkesanan kawalan torsi pada kelajuhan tinggi. Untuk mengatasi prestasi kawalan torsi dinamik yang lemah pada kelajuhan tinggi, penyelidikan ini mencadangkan pengubahsuaihan mudah lokus fluks stator daripada bulat kepada heksagon dengan melaraskan lebar jalur histeresis fluks dengan lebar jalur yang sesuai. Kawalan hibrid lokus fluks dicadangkan di mana lokus fluks heksagon dikawal semasa keadaan dinamik (contohnya, pecutan dan permintaan torsi besar secara tiba-tiba), manakala lokus fluks bulat dikawal semasa keadaan mantap (contohnya, kelajuhan malar dan permintaan torsi). Dengan mengubahsuai lokus fluks kepada bentuk heksagon, halaju sudut vektor fluks stator boleh ditingkatkan melebihi had konvensionalnya, seterusnya mengekalkan sudut beban dan dengan itu torsi motor pada kelajuhan tinggi. Pendekatan ini juga menggalakkan aplikasi vektor voltan paling optimum (iaitu vektor voltan yang mempunyai komponen tangen terbesar) kepada vektor fluks stator digunakan dengan kerap dan ini membolehkan peralihan voltan fasa daripada PWM kepada voltan hampir enam langkah dalam memenuhi permintaan torsi, semasa mod pecutan. Sebaliknya, lokus fluks berubah kembali kepada lokus bulat yang mengekalkan distorsi harmonik arus yang lebih rendah apabila kelajuhan mencapai permintaannya (iaitu keadaan mantap). Strategi kawalan lokus fluks hibrid digunakan dalam struktur DTC ringkas di mana mekanisme untuk mengubahsuai lokus fluks diaktifkan apabila DTC menggunakan lebar jalur hexagonal dan mengesan keadaan dinamik apabila ralat kelajuhan melebihi dikesan. Keputusan simulasi dan eksperimen mengesahkan peningkatan prestasi, termasuk tindak balas dinamik 31.25% lebih pantas, penghapusan ralat kelajuhan keadaan mantap sebanyak 3.57%, dan pengurangan 16.7% dalam arus operasi keadaan mantap. Manfaat penyelidikan ini ialah penambahbaikan boleh dicapai tanpa menggunakan strategi pelemahan fluks dan modulasi vektor angkasa (SVM) yang kompleks, menjadikan pendekatan ini sebagai penyelesaian praktikal dan skalabel untuk pemacu industri berprestasi tinggi dan aplikasi kenderaan elektrik.

ACKNOWLEDGEMENT

First and foremost, *Alhamdulillah*, all praise be to Allah for His divine guidance, blessings, good health, strength, wisdom, and inspiration that enabled me to complete this thesis successfully.

I would like to express my heartfelt gratitude to my supervisors, Dr. Auzani Bin Jidin and Dr. Siti Azura Binti Ahmad Tarusan, for their continuous guidance, support, and encouragement throughout the course of this research. Their expertise, constructive feedback, and invaluable insights have played a critical role in shaping the direction and outcome of this work.

My sincere thanks also go to my friend, Nurul Syahada, for her generous support, thoughtful suggestions, and encouragement, which have been instrumental throughout various stages of this project.

I am deeply grateful to my family for their unwavering love, patience, and support both emotional and financial throughout my journey. Their constant motivation and belief in me have been a true source of strength.

Lastly, I extend my sincere appreciation to everyone who has contributed, directly or indirectly, to the success of this research. Your help and kindness will always be remembered with gratitude.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	i
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiii
LIST OF APPENDICES	xvi
LIST OF PUBLICATIONS	xvii
 CHAPTER	
1. INTRODUCTION	18
1.0 Background	18
1.1 Problem Statement	22
1.2 Research Question	24
1.3 Research Objective	25
1.4 Scope of Research	26
1.5 Thesis Outline	27
2. OVERVIEW OF DIRECT TORQUE CONTROL FOR INDUCTION MACHINES	29
2.0 Introduction	29
2.1 Mathematical Modelling of Three-Phase Induction Machine	30
2.1.1 Cross-Section of a Two-Pole, Three-Phase Induction Machine	31
2.1.2 Space Vector Representation of Induction Machine Equations	32
2.1.3 d-q Axis Representation of Induction Machine Equations	34
2.1.4 Matrix Representation of d-q Axis Equations	35
2.1.5 Electromagnetic Torque Calculation	36
2.1.6 Application of Mathematical Model in DTC	37
2.2 Voltage Vectors of Three-Phase VSI	38
2.3 Direct Torque Control of Induction Machine	40
2.3.1 Basic Principles of DTC	41
2.3.2 Stator Flux Controller	42
2.3.3 Torque Controller	46
2.3.4 Structure of DTC Hysteresis-Based Induction Machine	51
2.4 Challenges in Conventional DTC	55
2.5 Improvement in DTC Implementation	57
2.5.1 Space Vector Modulation (SVM) Based DTC	58
2.5.2 Carrier Based Modulation of DTC	64
2.5.3 Overmodulation Strategy for DTC	68

2.5.3.1	Torque Capability in DTC	68
2.5.3.2	Six Step Mode	71
2.5.3.3	Six Step Mode with Flux Weakening	74
2.5.3.4	Hexagonal Flux Locus Strategy	76
2.6	Chapter Conclusion	84
3.	RESEARCH METHODOLOGY	85
3.0	Introduction	85
3.1	Development of the Proposed Hexagonal Flux Locus Strategy	87
3.1.1	Sector Definition and Voltage Vector Mapping	87
3.1.2	Optimum Voltage Vector Selection for Quick Torque Dynamic Control	99
3.1.3	Determination of Flux Bandwidth and Flux Locus Size	107
3.1.4	Proposed Hybrid DTC Control Structure	110
3.2	Simulation Model and Experimental Setup	114
3.2.1	Proposed DTC Simulation Model	114
3.2.2	Hybrid Switch	116
3.2.3	Modified Flux Controller	118
3.2.4	PI Speed Controller	119
3.2.5	Induction Machine and Simulation Parameters	120
3.2.6	Current Component Calculator	123
3.2.7	Voltage Component Calculator	124
3.2.8	Flux and Torque Estimator	125
3.2.9	Flux Sector Detection	126
3.2.10	Lookup Table	127
3.2.11	Voltage Source Inverter (VSI)	128
3.3	Experimental Setup	129
3.3.1	DS1104 R&D Controller Board	132
3.3.2	MATLAB/Simulink Experiment Program	134
3.3.3	Speed Sensor Calibration	136
3.3.4	ON/OFF switch	138
3.3.5	Current Input	139
3.3.6	Input and Output Setup	140
3.3.7	dSPACE ControlDesk	142
3.3.8	Induction Motor	143
3.3.9	Safety Practice	144
3.4	Summary of Research Methodology	144
4.	RESULT AND DISCUSSION	146
4.0	Introduction	146
4.1	Modification of Stator Flux Locus by Adjusting Flux Hysteresis Bandwidth	148
4.2	Performance of Torque Control in High-Speed for Steady-State Condition	153
4.3	Performance of Torque and Speed Controls for Dynamic State Condition	158
4.4	Performance of Torque and Speed Controls for Acceleration from Standstill	163

4.5	Hybrid Performance Analysis	166
4.6	Chapter Conclusion	172
5.	CONCLUSIONS AND RECOMMENDATIONS	173
5.0	Conclusions	173
5.1	Recommendations	175
REFERENCES		178
APPENDICES		192

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Selection of suitable voltage vectors (based on look-up table)	53
2.2	Comparison of DTC enhancement strategies for high-speed operation	83
3.1	Sector detection with border angle	89
3.2	Switching states with corresponding voltage components	92
3.3	Look-up table for selecting suitable voltage vectors	94
3.4	Induction motor parameters	121
3.5	Simulation parameters	122
4.1	Modification of flux locus due to changes of flux bandwidth	148

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Control structure of field-oriented control (FOC) for induction machine	19
1.2	Basic hysteresis-based direct torque control (DTC) structure for induction machine	20
1.3	Impact of large torque ripple in hysteresis-based DTC on torque error status	23
2.1	Cross-section of two poles induction machine	32
2.2	Schematic diagram of a three-phase VSI	38
2.3	Simplified version of the VSI	39
2.4	Voltage vectors and corresponding switching states available in a three-phase VSI	40
2.5	Flux control using a two-level hysteresis comparator	42
2.6	Typical waveforms of stator flux, flux error, and flux error status in a two-level hysteresis flux comparator	43
2.7	Definition of six sectors in stator flux plane	44
2.8	Trajectory of stator flux to form a circular locus using 2 active voltages vector each sector within hysteresis band	45
2.9	Variation of load angle (δ_{sr}) with application of (a) active voltage vectors, (b) zero voltage vectors, and (c) reverse voltage vectors	47
2.10	Torque control using a three-level hysteresis comparator	49
2.11	Waveforms of torque, torque error, and torque error status for a three-level hysteresis torque comparator	50
2.12	Reaction of torque and flux error status	50
2.13	Basic hysteresis-based DTC structure for an induction machine	51
2.14	Issues of large torque ripple and variable switching frequency in hysteresis-based DTC	56

2.15	Reference of space voltage vector based on the equation (2.32)	59
2.16	Generation of switching vectors and their effect on torque variation	61
2.17	Control structure of dtc with space vector modulation (DTC-SVM)	62
2.18	Control structure of DTC incorporating dithering signal	64
2.19	DTC control structure with a CSF torque controller	65
2.20	Torque ripple signal with the application of higher constant switching frequency (a) Low carrier frequency, (b) High carrier frequency	66
2.21	Phasor diagrams of the stator voltage vector, ohmic voltage drop, and Back-EMF during (a) Low-speed operation and (b) Base-speed operation	70
2.22	Mapping of voltage vectors and stator flux trajectories	73
2.23	Performance of DTC with the flux weakening and overmodulation strategy compared to conventional DTC	75
2.24	Structure of a DTC-CSF-Based induction machine with the proposed flux error status modification block	77
2.25	Proposed digital outputs of the modified flux error status corresponding to flux positions	78
2.26	Effect of ohmic voltage drop on the stator flux vector trajectory (a) Stator flux locus and (b) Phasor diagram based on equation (2.42)	80
2.27	Flux keeps increasing until it reaches to the point c	81
2.28	State diagram of the finite state machine for establishing the modified flux error status ($\sigma_{\varphi,mod}$) to Enable proper hexagonal flux locus operation	82
3.1	Research workflow	86
3.2	Flux sector with angle border of the sector	88
3.3	Flow chart of the sector detector program	90
3.4	Voltage vector selection in anticlockwise direction	91
3.5	Switching states selection in anticlockwise direction with its switching states	93
3.6	Voltage vector selection in sector 1 with irregular motion	95
3.7	Inconsistent torque slope due to selection of different voltage vectors	96

3.8	Stator flux locus (a) Circular like shape with small fluxband, b) Hexagonal shape with wider fluxband	97
3.9	Consistent torque slope with selection of same voltage vectors	98
3.10	Voltage vector selection in all sector for hexagonal flux locus with flux error status	99
3.11	(a) Stator flux entering sector 2, and (b) Stator flux at the middle of sector 2	100
3.12	Comparison of load angle, δ_{sr} in two different modes switching (a) Stator flux entering sector 2, and (b) stator flux at the middle of sector 2	102
3.13	Stator flux condition that increases the bandwidth to allow the hexagonal flux locus and lower the value of stator flux mean	104
3.14	Phasor diagrams of the stator voltage vector, ohmic voltage drop and back-emf for circular flux locus	105
3.15	Hexagonal boundary limit for conventional DTC with circular flux locus	106
3.16	Hexagonal boundary limit for proposed DTC with hexagonal flux locus	107
3.17	Hexagonal flux locus with both equilateral triangle	108
3.18	a) Equilateral triangle, b) Triangle with right angle	108
3.19	The hexagonal flux locus with new bandwidth	109
3.20	Full schematic diagram of proposed method	111
3.21	Proposed strategy of flux controller block	111
3.22	State diagram of proposed flux control that utilize the speed error, (e_ω) for flux locus mode selection	112
3.23	PI speed controller	113
3.24	PI controller in DTC placement	113
3.25	Full program of proposed method	115
3.26	Hybrid switch	117
3.27	Condition of the flux locus change from circular to hexagonal and change back to circular in motor dynamic condition	117
3.28	Modified flux controller	118
3.29	PI controller	119

3.30	Current component calculator	123
3.31	Voltage component calculator	124
3.32	Flux and torque estimator	126
3.33	Voltage source inverter (VSI)	128
3.34	Complete experimental setup (a) Laboratory setup, (b) Block diagram	130
3.35	DS1104 R&D controller board	133
3.36	MATLAB/Simulink program for experiment	135
3.37	Speed error calculation block	137
3.38	Switch ON/OFF	138
3.39	Current input	139
3.40	(a) MASTER BIT OUT, (b) DAC, (c) MUX ADC	141
3.41	dSPACE controller setup	142
3.42	Induction Motor	143
4.1	Flow of performance analysis	146
4.2	Stator flux for different bandwidth	149
4.3	Flux locus simulation and experiment in the condition of (a) DTC1, (b) DTC2, (c) DTC3, (d) DTC4, and (e) DTC5	151
4.4	Torque and d-q flux simulation waveform in steady-state condition, (a) DTC1, (b) DTC2, (c) DTC3, (d) DTC4, and (e) DTC5	154
4.5	Torque and d-q flux experiment waveform in steady-state condition, (a) DTC1, (b) DTC2, (c) DTC3, (d) DTC4, and (e) DTC5	156
4.6	Simulation results of speed and torque during acceleration mode for (a) DTC1, (b) DTC2, (c) DTC3, (d) DTC4, and (e) DTC5	159
4.7	Experimental results of speed and torque during acceleration mode for (a) DTC1, (b) DTC2, (c) DTC3, (d) DTC4, and (e) DTC5	161
4.8	Waveforms of Speed and Torque When the Speed in Controlled DTC1 (a) Simulation and (b) Experiment Results	164
4.9	Waveforms of Speed and Torque When the Speed in Controlled DTC5 (a) Simulation and (b) Experiment Results	165
4.10	Simulation results obtained in dtc1 for a step change of speed, i.e. from 500 rpm to 1400 rpm	168

4.11	Simulation results obtained in the proposed hybrid dtc for step change of speed, i.e. from 500 rpm to 1400 rpm	169
4.12	Experimental results obtained in DTC1 for a step change of speed, i.e. from 500 rpm to 1400 rpm	170
4.13	Experimental results obtained in the proposed hybrid DTC for step change of speed, i.e. from 500 rpm to 1400 rpm	171

LIST OF ABBREVIATIONS

DC	-	Direct Current
AC	-	Alternating Current
UTeM	-	Universiti Teknikal Malaysia Melaka
FOC	-	Field-Oriented Control
DTC	-	Direct Torque Control
SVM	-	Space Vector Modulation
VFDs	-	Variable Frequency Drives
EMI	-	Electromagnetic Interference
VSI	-	Voltage Source Inverter
IGBTs	-	Insulated Gate Bipolar Transistors
IM	-	Induction Motor
UB	-	Upper Band
LB	-	Lower Band
MB	-	Middle Band
PI	-	Proportional-Integral
VSC	-	Variable-Structure Control
FPGAs	-	Field Programmable Gate Arrays
CSF	-	Constant Switching Frequency
PWM	-	Pulse Width Modulation
Sec	-	Sector
ENC	-	Encoder
DAC	-	Digital-to-Analog Converter

ADC	-	Analog-to-Digital Converter
I/O	-	Input/Output
IE	-	Incremental Encoder
V	-	Voltage
HP	-	Horsepower
RPM	-	Revolution per minutes

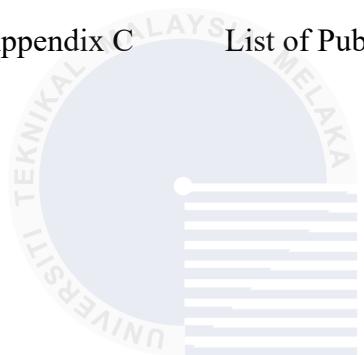
LIST OF SYMBOLS

\bar{v}_s	- Stator voltage space vectors
R_s	- Stator resistance
i_s	- Stator current space vectors
$\bar{\varphi}_s$	- Stator flux
\bar{v}_r	- Rotor voltage
R_r	- Rotor voltage
i_r	- Rotor current
φ_r	- Rotor flux
ω_r	- Rotor electrical speed
L_s	- Stator self-inductances
L_r	- Rotor self-inductances
L_m	- Mutual inductance
T_e	- Electromagnetic torque
P	- Number of pole pairs
s	- Laplace operator
S_x	- Upper switch
\bar{S}_x	- Lower switch
\bar{v}_x	- Voltage vectors
δ_{sr}	- Load angle
δ_{sr0}	- Initial load angle
σ_T	- Torque error status
V_{DC}	- DC voltage

t	-	Time
q	-	q-axis
d	-	d-axis
φ_s^*	-	Stator flux reference
φ_s	-	Stator flux
φ_{err}	-	Flux error
σ_φ	-	Flux error status
ε_T	-	Torque error
T_e^* , $T_{e, \text{ref}}$	-	Torque reference
T_e	-	Torque
Nm	-	Newton meter
DT	-	Sampling time
T	--	Period

UNIVERSITI TEKNOLOGI MALAYSIA MELAKA

k_p	Proportional gain
k_i	Integral gain
c_{upper}	Upper carrier
c_{lower}	Lower carrier
E_ω	Speed error
θ_φ	Flux angle
ω_m	Motor speed
ω_{ref}	Speed Reference
N	Motor speed in rpm
T_s	Sampling time


ppr

- Pulses per revolution

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Sector Detector	192
Appendix B	Look-Up Table	193
Appendix C	List of Publications	196

اویونیورسیتی تکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

The following is a list of publications derived from the research conducted in this thesis:

S.A.S.A. Zawawi, A. Jidin, N.S.M. Sabri, S.A.A. Tarusan, 2025. Enhanced torque control in high-speed DTC using modified stator flux locus. *International Journal of Power Electronics and Drive Systems*, 16(1), pp. 457–463. (Scopus)

N.S.M. Sabri, S.A.A. Tarusan, S.A.S.A. Zawawi, A. Jidin, T. Sutikno, 2025. Optimizing low-speed DTC performance for three-phase induction motors with sector rotation strategy. *International Journal of Power Electronics and Drive Systems*, 16(1), pp. 464–471. (Scopus)

N.S.M. Sabri, S.A.A. Tarusan, S.A.S.A. Zawawi, A. Jidin, 2025. Mitigating Flux Droop in Low-Speed Steady-State DTC for Three-Phase Induction Motors. *2025 IEEE 8th International Conference on Electrical, Control and Computer Engineering (InECCE)*. 27 August 2025 IEEE, pp. 171–176. (Scopus)