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ABSTRACT

This thesis presents an enhanced Direct Torque Control (DTC) strategy for three-phase
induction motors aimed at improving dynamic torque control performance in high-speed
operations by modifying the stator flux locus. DTC is widely adopted in industrial
applications due to its simple structure and fast torque response. However, it suffers from
notable limitations such as high torque ripple and inadequate torque control under high-
speed conditions. These drawbacks are primarily due to the use of hysteresis controllers and
the limitation imposed by a circular stator flux locus, which restricts the angular frequency
of the stator flux vector and degrades the ability to maintain the load angle, thus reducing
torque control effectiveness at high speeds. To overcome the poor torque dynamic control
performance at high speeds, this research proposes a simple modification of the stator flux
locus from a circular into a hexagonal by adjusting the flux hysteresis bandwidth with an
appropriate bandwidth. A hybrid control of flux locus is proposed where the hexagonal flux
locus is controlled during the dynamic conditions (acceleration and a sudden large torque
demands), while the circular flux locus is controlled during steady-state conditions (constant
speed and torque demands). By modifying the flux locus into a hexagonal shape, the angular
velocity of the stator flux vector can be increased beyond its conventional limit, thereby
maintaining the load angle and hence the motor torque at high speeds. This approach also
promotes the application of the most optimal voltage vectors (the voltage vectors that have
the largest tangential component) to the stator flux vector are frequently applied and this
enables the transition of phase voltages from a PWM to almost a six-step voltage in
satisfying the torque demand, during acceleration mode. On the other hand, the flux locus
transforms back to a circular locus which retains lower current harmonic distortions when
the speed reaches to its demand (steady-state condition). The hybrid flux locus control
strategy is adopted in the simple DTC structure where the mechanism to modify the flux
locus is enabled when the DTC applied the hexagonal® bandwidth and detects a dynamic
condition when a large speed error is detected. Simulation and experimental results confirm
performance gains, including a 31.25% faster dynamic response, elimination of steady-state
speed error by 3.57%, and a 16.7% reduction in steady-state operating current. The benefit
of this research is the improvements can be achieved without the use of complex flux
weakening and space vector modulation (SVM) strategy, making the approach a practical
and scalable solution for high-performance industrial drives and electric vehicle
applications.



PENGUBAHSUAIAN LOKUS FLUKS STATOR UNTUK PENAMBAHBAIKAN
KAWALAN TORK DALAM MOTOR ARUHAN BERKELAJUAN TINGGI

ABSTRAK

Tesis ini membentangkan strategi Kawalan Torsi Langsung (DTC) yang dipertingkat untuk
motor aruhan tiga fasa yang bertujuan meningkatkan prestasi kawalan torsi dinamik dalam
operasi berkelajuan tinggi melalui pengubahsuaian lokus fluks stator. DTC digunakan
secara meluas dalam aplikasi industri disebabkan oleh strukturnya yang ringkas dan tindak
balas torsi yang pantas. Walau bagaimanapun, ia mempunyai batasan ketara seperti riak
torsi yang tinggi dan kawalan torsi yang tidak mencukupi di bawah keadaan kelajuan tinggi.
Kelemahan ini berpunca darvipada penggunaan pengawal histeresis dan batasan yang
dikenakan oleh lokus fluks stator bulat, yang menyekat frekuensi sudut vektor fluks stator
dan mengurangkan keupayaan untuk mengekalkan sudut beban, seterusnya mengurangkan
keberkesanan kawalan torsi pada kelajuan tinggi. Untuk mengatasi prestasi kawalan torsi
dinamik yang lemah pada kelajuan tinggi, penyelidikan ini mencadangkan pengubahsuaian
mudah lokus fluks stator daripada bulat kepada heksagon dengan melaraskan lebar jalur
histeresis fluks dengan lebar jalur yang sesuai. Kawalan hibrid lokus fluks dicadangkan di
mana lokus fluks heksagon dikawal semasa keadaan dinamik (contohnya, pecutan dan
permintaan torsi besar secara tiba-tiba), manakala lokus fluks bulat dikawal semasa
keadaan mantap (contohnya, kelajuan malar dan permintaan torsi). Dengan mengubahsuai
lokus fluks kepada bentuk heksagon, halaju sudut vektor fluks stator boleh ditingkatkan
melebihi had konvensionalnya, seterusnya mengekalkan sudut beban dan dengan itu torsi
motor pada kelajuan tinggi. Pendekatan ini juga menggalakkan aplikasi vektor voltan paling
optimum (iaitu vektor voltan yang mempunyai komponen tangen terbesar) kepada vektor
Sfluks stator digunakan dengan kerap dan ini membolehkan peralihan voltan fasa daripada
PWM kepada voltan hampir enam langkah dalam memenuhi permintaan torsi, semasa mod
pecutan. Sebaliknya, lokus fluks berubah kembali kepada lokus bulat yang mengekalkan
distorsi harmonik arus yang lebih rendah apabila kelajuan mencapai permintaannya (iaitu
keadaan mantap). Strategi kawalan lokus fluks hibrid digunakan dalam struktur DTC
ringkas di mana mekanisme untuk mengubahsuai lokus fluks diaktifkan apabila DTC
menggunakan lebar jalur hexagonal dan mengesan keadaan dinamik apabila ralat kelajuan
melebihi dikesan. Keputusan simulasi dan eksperimen mengesahkan peningkatan prestasi,
termasuk tindak balas dinamik 31.25% lebih pantas, penghapusan ralat kelajuan keadaan
mantap sebanyak 3.57%, dan pengurangan 16.7% dalam arus operasi keadaan mantap.
Manfaat penyelidikan ini ialah penambahbaikan boleh dicapai tanpa menggunakan strategi
pelemahan fluks dan modulasi vektor angkasa (SVM) yang kompleks, menjadikan
pendekatan ini sebagai penyelesaian praktikal dan skalabel untuk pemacu industri
berprestasi tinggi dan aplikasi kenderaan elektrik.
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