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ABSTRACT

In recent years, composite materials have become alternative materials in various industries
due to their mechanical properties, where they are lightweight and corrosion resistant.
Among these, hybrid composites that combine Carbon Fiber Reinforced Plastic (CFRP) and
Aluminum (Al) have attracted a lot of attention because of its performance in the aerospace
industry. CFRP/AI features with multiple plies of material stacked together in reinforced
laminate form, with varying properties throughout the structure, making it ideal for
aerospace, automotive, and sports equipment manufacturing. However, the anisotropic
nature of these hybrid composites presents unique challenges during the drilling process
which often results in hole defects such as delamination, poor surface roughness and burr
formation. This research aims to investigate the optimized drill bit design for drilling at
various angles to improve hole quality and minimize defects, while increasing the
application of CFRP/AI composites. In this study, a matrix planning was employed using
the Taguchi method to screen significant factors. From five parameters, including machining
parameters, tool geometry features, and drilling angle conditions, three key parameters
(point angle, helix angle, and drilling penetration angle) were selected for optimization using
Response Surface Methodology (RSM). Through statistical analysis, the remaining
parameters were fixed at optimal levels to produce the best hole quality. Two DOEs for entry
and exit holes are conducted separately for a comprehensive understanding of the drilling
process. In RSM, mathematical regression models and 3D response surface plot have
successfully been analyzed to describe the relationships between the key parameters and
hole quality. Optimization results indicated that drill geometry with a 124° point angle, 20°
helix angle, and a 6° penetration angle is optimal parameter for drilling CFRP/AI. A custom
drill bit was developed and validated through experimental work, which showed less than
10% error compared to the predicted values, confirming its accuracy and validity. The
customized drill bit design, combined with the optimal penetration angle, demonstrates
significant potential for enhancing hole quality and reducing defects in CFRP/AI composites,
thereby improving the reliability and cost-efficiency of manufacturing processes within the

aerospace industry.



PENGOPTIMUMAN GEOMETRI GERUDI DAN SUDUT PENEMBUSAN UNTUK
PENGGERUDIAN BERKUALITI TINGGI BAGI KOMPOSIT HIBRID
CFRP/AL

ABSTRAK

Dalam beberapa tahun kebelakangan ini, bahan komposit telah menjadi bahan alternatif
yang menonjol dalam pelbagai industri kerana sifat mekanikalnya yang luar biasa, di mana
ia ringan dan tahan kakisan. Antaranya, komposit hibrid yang menggabungkan Carbon
Fiber Reinforced Plastic (CFRP) dan Aluminium (Al) telah menarik perhatian ramai kerana
prestasinya dalam industri aeroangkasa. Ciri CFRP/AI dengan pelbagai lapisan bahan
yang disusun bersama dalam bentuk lamina bertetulang, dengan sifat yang berbeza-beza di
seluruh struktur, menjadikannya sesuai untuk pembuatan peralatan aeroangkasa, automotif
dan sukan. Walau bagaimanapun, sifat anisotropik komposit hibrid ini memberikan cabaran
unik semasa proses penggerudian yang sering mengakibatkan kecacatan lubang seperti
penembusan, kekasaran permukaan yang lemah dan pembentukan burr. Kajian ini
menyiasat pengaruh geometri bit gerudi dan sudut penembusan ke atas kualiti lubang dalam
penggerudian komposit hibrid CFRP/AI. Penyelidikan ini bertujuan untuk menyiasat reka
bentuk mata gerudi yang dioptimumkan untuk penggerudian pada pelbagai sudut untuk
meningkatkan kualiti lubang dan meminimumkan kecacatan, sambil meningkatkan
penggunaan komposit CFRP/AIL. Daripada lima parameter, termasuk parameter pemesinan,
ciri geometri alat dan keadaan sudut penggerudian, tiga parameter utama (sudut titik, sudut
heliks dan sudut penembusan penggerudian) telah dipilih untuk pengoptimuman
menggunakan Metodologi Permukaan Respons (RSM). Melalui analisis statistik, parameter
selebihnya telah ditetapkan pada tahap optimum untuk menghasilkan kualiti lubang terbaik.
Dua DOE untuk lubang masuk dan keluar dijalankan secara berasingan untuk pemahaman
menyeluruh tentang proses penggerudian. Dalam RSM, model regresi matematik dan plot
permukaan tindak balas 3D telah berjaya dianalisis untuk menerangkan hubungan antara
parameter utama dan kualiti lubang. Keputusan pengoptimuman menunjukkan bahawa
geometri gerudi dengan sudut titik 124°, sudut heliks 20° dan sudut penembusan 6° ialah
parameter optimum untuk penggerudian CFRP/AI. Mata gerudi khas telah dibangunkan dan
disahkan melalui kerja eksperimen, yang menunjukkan ralat kurang daripada 10%
berbanding dengan nilai yang diramalkan, mengesahkan ketepatan dan kesahihannya.
Rekabentuk mata gerudi khas, bersama dengan sudut penembusan optimum, menunjukkan
potensi yang signifikan dalam meningkatkan kualiti lubang dan mengurangkan kecacatan
pada komposit CFRP/AI, sekali gus meningkatkan kebolehpercayaan dan kecekapan kos
proses pembuatan dalam industri aeroangkasa.
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CHAPTER 1

INTRODUCTION

This chapter provides an overview of the study’s background, focusing on the
influence of hybrid composite materials in the current industry. It includes a problem
statement that highlights the industry’s challenges, which prompted this experimental
investigation. Therefore, this section will also present the research objectives, scope of study,

significance of study and the thesis arrangement of the report.

1.1  Background of Study

Nowadays, composite materials such as Carbon Fibre Reinforced Plastic (CFRP) are
widely used in machining industries such as, automotive, aerospace, marine industry,
medical devices, and robotics. This demand is driven by CFRP’s mechanical properties,
which is much lighter than traditional metals like steel and aluminum (Xu and EI Mansori,
2016). Therefore, its low density contributes to its high specific strength and is advantageous
in industries where reducing weight is essential for performance and efficiency. Figure 1.1
shows that more than 50% of composites are used to make airframes in aerospace industry.
In addition, hybrid CFRP is also frequently used in the machining industry. Therefore, my
research focuses on CFRP/AI hybrid composite materials and their impact on high-quality
assembly and drilling processes.

A hybrid type of CFRP/AL which consists of carbon fibre reinforcements with a

secondary reinforcement that improves the fracture toughness and tensile elastic modulus is



still new in the machining field. The application of hybrid composites in the aerospace
industry has increased due the combination of various matrix materials such as epoxy or
carbon fibers offer a high strength-to-weight ratio. Therefore, it is ideal for aerospace
applications where weight reduction is important for fuel efficiency and flight
performance. According to Redouane Zitoune et al. (2012) and Wang et al. (2021), carbon
fiber reinforced plastic/polymer (CFRP) and aluminum alloy (Al) is the best material in

aircraft structures for weight reduction.

-----------------------

miscellaneous

CFRP:
‘l'l'lngs
Centre wing box and kee! beam
Tall cone
Skin panels

14% |

: » ' Titanium
Frames. stringers and doublers .
Doors (passenger and cargo)

Figure 1.1: CFRP in Aircraft (Bachmann et al., 2017)

Drilling on CFRP/AL material is a crucial assembly step in aircraft manufacturing.
However, the anisotropic properties of CFRP/AL create major problem during the drilling
process that been reportedly causes 60% of defective parts. Jia et al. (2016) mentioned that
in drilling CFRP/AI, CFRP is a hard-to-cut material, where there is interaction on the
composite material that causes defects during machining process. Decades ago, a lot of
research was done on drilling CFRP/AL composites. Most of these studies are only focused

on drill bit design and drill bit geometry, but there is no research that highlights the issue of

2
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