

اوینیورسیتی تیکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

**OPTIMIZATION OF DRILL GEOMETRY AND PENETRATION
ANGLE FOR HIGH QUALITY DRILLING OF CFRP/AL HYBRID
COMPOSITE**

FATIMATUZZAHRAH BINTI MOHAMED ARIF

اوینیورسیتی تیکنیکل ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

2024

Faculty of Industrial and Manufacturing Technology and Engineering

OPTIMIZATION OF DRILL GEOMETRY AND PENETRATION
ANGLE FOR HIGH QUALITY DRILLING OF CFRP/AL HYBRID
COMPOSITE

Fatimatuzzahrah Binti Mohamed Arif

اوینیورسیتی تیکنیکل ملیسیا ملاک

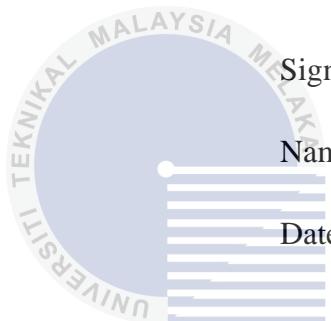
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Master of Science in Manufacturing Engineering

2024

**OPTIMIZATION OF DRILL GEOMETRY AND PENETRATION ANGLE FOR
HIGH QUALITY DRILLING OF CFRP/AL HYBRID COMPOSITE**

FATIMATUZZAHRAH BINTI MOHAMED ARIF



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DECLARATION

I declare that this thesis entitled “Optimization of Drill Geometry and Penetration Angle for High Quality Drilling of CFRP/Al Hybrid Composite“ is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature :

Name : Fatimatuzzahrah Binti Mohamed Arif

Date : 29-10-2024

اوینیورسیتی ٹکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

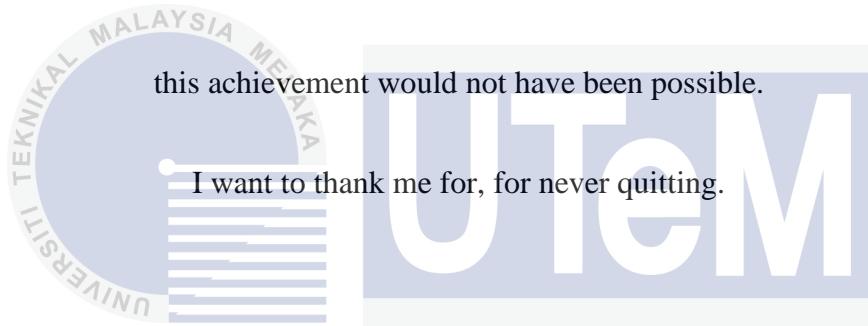
APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Manufacturing Engineering.

DEDICATION

To my beloved husband and my dearest son

To my supportive parents and family


Thank you for giving me moral support, cooperation, encouragement, and understandings.

I have the courage and drive to overcome obstacles and follow my ambitions because of

their love and faith in me. Without their efforts and unceasing support,

this achievement would not have been possible.

I want to thank me for, for never quitting.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

In recent years, composite materials have become alternative materials in various industries due to their mechanical properties, where they are lightweight and corrosion resistant. Among these, hybrid composites that combine Carbon Fiber Reinforced Plastic (CFRP) and Aluminum (Al) have attracted a lot of attention because of its performance in the aerospace industry. CFRP/Al features with multiple plies of material stacked together in reinforced laminate form, with varying properties throughout the structure, making it ideal for aerospace, automotive, and sports equipment manufacturing. However, the anisotropic nature of these hybrid composites presents unique challenges during the drilling process which often results in hole defects such as delamination, poor surface roughness and burr formation. This research aims to investigate the optimized drill bit design for drilling at various angles to improve hole quality and minimize defects, while increasing the application of CFRP/Al composites. In this study, a matrix planning was employed using the Taguchi method to screen significant factors. From five parameters, including machining parameters, tool geometry features, and drilling angle conditions, three key parameters (point angle, helix angle, and drilling penetration angle) were selected for optimization using Response Surface Methodology (RSM). Through statistical analysis, the remaining parameters were fixed at optimal levels to produce the best hole quality. Two DOEs for entry and exit holes are conducted separately for a comprehensive understanding of the drilling process. In RSM, mathematical regression models and 3D response surface plot have successfully been analyzed to describe the relationships between the key parameters and hole quality. Optimization results indicated that drill geometry with a 124° point angle, 20° helix angle, and a 6° penetration angle is optimal parameter for drilling CFRP/Al. A custom drill bit was developed and validated through experimental work, which showed less than 10% error compared to the predicted values, confirming its accuracy and validity. The customized drill bit design, combined with the optimal penetration angle, demonstrates significant potential for enhancing hole quality and reducing defects in CFRP/Al composites, thereby improving the reliability and cost-efficiency of manufacturing processes within the aerospace industry.

**PENGOPTIMUMAN GEOMETRI GERUDI DAN SUDUT PENEMBUSAN UNTUK
PENGERUDIAN BERKUALITI TINGGI BAGI KOMPOSIT HIBRID
CFRP/AL**

ABSTRAK

Dalam beberapa tahun kebelakangan ini, bahan komposit telah menjadi bahan alternatif yang menonjol dalam pelbagai industri kerana sifat mekanikalnya yang luar biasa, di mana ia ringan dan tahan kakisan. Antaranya, komposit hibrid yang menggabungkan Carbon Fiber Reinforced Plastic (CFRP) dan Aluminium (Al) telah menarik perhatian ramai kerana prestasinya dalam industri aeroangkasa. Ciri CFRP/Al dengan pelbagai lapisan bahan yang disusun bersama dalam bentuk lamina bertetulang, dengan sifat yang berbeza-beza di seluruh struktur, menjadikannya sesuai untuk pembuatan peralatan aeroangkasa, automotif dan sukan. Walau bagaimanapun, sifat anisotropik komposit hibrid ini memberikan cabaran unik semasa proses penggerudian yang sering mengakibatkan kecacatan lubang seperti penembusan, kekasaran permukaan yang lemah dan pembentukan burr. Kajian ini menyiasat pengaruh geometri bit gerudi dan sudut penembusan ke atas kualiti lubang dalam penggerudian komposit hibrid CFRP/Al. Penyelidikan ini bertujuan untuk menyiasat reka bentuk mata gerudi yang dioptimumkan untuk penggerudian pada pelbagai sudut untuk meningkatkan kualiti lubang dan meminimumkan kecacatan, sambil meningkatkan penggunaan komposit CFRP/Al. Daripada lima parameter, termasuk parameter pemesinan, ciri geometri alat dan keadaan sudut penggerudian, tiga parameter utama (sudut titik, sudut heliks dan sudut penembusan penggerudian) telah dipilih untuk pengoptimuman menggunakan Metodologi Permukaan Respons (RSM). Melalui analisis statistik, parameter selebihnya telah ditetapkan pada tahap optimum untuk menghasilkan kualiti lubang terbaik. Dua DOE untuk lubang masuk dan keluar dijalankan secara berasingan untuk pemahaman menyeluruh tentang proses penggerudian. Dalam RSM, model regresi matematik dan plot permukaan tindak balas 3D telah berjaya dianalisis untuk menerangkan hubungan antara parameter utama dan kualiti lubang. Keputusan pengoptimuman menunjukkan bahawa geometri gerudi dengan sudut titik 124° , sudut heliks 20° dan sudut penembusan 6° ialah parameter optimum untuk penggerudian CFRP/Al. Mata gerudi khas telah dibangunkan dan disahkan melalui kerja eksperimen, yang menunjukkan ralat kurang daripada 10% berbanding dengan nilai yang diramalkan, mengesahkan ketepatan dan kesahihannya. Rekabentuk mata gerudi khas, bersama dengan sudut penembusan optimum, menunjukkan potensi yang signifikan dalam meningkatkan kualiti lubang dan mengurangkan kecacatan pada komposit CFRP/Al, sekali gus meningkatkan kebolehpercayaan dan kecekapan kos proses pembuatan dalam industri aeroangkasa.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful. I am grateful to Allah S.W.T for granting me the strength and patience to complete this research. His Mercy and Grace were central to the completion of this work.

First and foremost, I would like to take this opportunity to express my sincere gratitude to my supervisor, Dr. Mohd Sanusi Bin Abdul Aziz from the Faculty of Industrial and Manufacturing Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), for his essential supervision, support, and encouragement towards the completion of this thesis.

I would also like to extend my deepest thanks to Profesor Madya Ir. Ts. Dr. Mohd Hadzley Bin Abu Bakar from the same faculty, co-supervisor of this research, for his invaluable advice and support throughout this study. Additionally, I would like to express my deepest gratitude to all the technicians in the Faculty of Industrial and Manufacturing Technology and Engineering for their assistance and efforts during the lab activities.

TABLE OF CONTENTS

	PAGES
DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABSTRAK	vii
ACKNOWLEDGEMENT	ix
TABLE OF CONTENTS	xii
LIST OF TABLES	xiv
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	
LIST OF APPENDICES	
LIST OF PUBLICATIONS	
 CHAPTER	
1. INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.2.1 Challenges in Drilling Composite Material	4
1.2.2 Damages in Drilling Composite Material	5
1.2.3 Cutting Tool Roles in Machining Composite Material	6
1.3 Objectives	6
1.4 Scope of Study	7
1.5 Significant of Study	8
1.6 Thesis Arrangements	9
2. LITERATURE REVIEW	11
2.1 Composite Material	11
2.1.1 CFRP Composite	11
2.1.2 CFRP Hybrid Composites	13
2.2 Application of Composites	14
2.2.1 CFRP Application	14
2.2.2 Hybrid CFRP Application	16
2.3 Machining Process of CFRP	18
2.3.1 Drilling Process	19
2.3.2 Drilling Parameter	22
2.3.3 Drill Bit Geometry	26
2.4 Drilling Performance	29
2.4.1 Delamination	30
2.4.2 Thrust Force	33
2.4.3 Hole Surface Roughness	34
2.4.4 Tool wear	35
2.5 Review of Statistical Techniques used in Drilling	37
2.5.1 Taguchi Experimental Design	37

2.5.2	Response Surface Methodology (RSM)	38
2.6	Recent Issues Hybrid Composite Material	39
2.7	Summary	42
3.	METHODOLOGY	43
3.1	Research Flow	43
3.2	Workpiece Material	46
3.2.1	Detail Specification of Workpiece	46
3.2.2	Microstructure of CFRP/A1	48
3.3	Cutting tools	49
3.3.1	Detail Specification of Cutting Tool	49
3.3.2	Microstructure of Tungsten Carbide Drill	51
3.4	Experimental Setup	52
3.4.1	CNC Machine	52
3.4.2	Drilling Penetration Angle	55
3.4.3	Equipment for Measure the Experimental Data	56
3.5	Drilled Hole Evaluation	59
3.5.1	Hole Delamination	59
3.5.2	Hole Surface Roughness	64
3.6	Drilling Force Measurement	66
3.7	Design of experiment (DOE)	68
3.7.1	Taguchi Experimental Design	68
3.7.2	Box-Behnken Design in RSM	71
3.8	Optimization of Drill Geometry	73
4.	RESULT AND DISCUSSION	75
4.1	Preliminary Study of Various Tool Geometry and Drilling Parameter	75
4.2	DOE Analysis of Screening using Taguchi Orthogonal Array	76
4.2.1	Hole Entry Delamination	76
4.2.2	Hole Exit Delamination	79
4.2.3	Thrust Force	81
4.2.4	Surface Roughness	85
4.2.5	Screening Analysis Summary	89
4.3	Influence of Drill Bit Geometry and Penetration Angle on Hole Quality	92
4.3.1	Influence on Hole Quality (Hole Entry Delamination)	92
4.3.2	Influence on Hole Quality (Hole Exit Delamination)	104
4.3.3	Influence on Thrust Force	115
4.3.4	Influence on Surface Roughness	124
4.3.5	Microscopic Observation of the Drilled Hole	135
4.3.6	Summary of Modelling	138
4.4	Optimization	140
4.4.1	Selected Drill Bit Geometry and Penetration Angle	143
4.5	Validation	145
4.5.1	Validation on Hole Entry Delamination	145
4.5.2	Validation on Hole Exit Delamination	147

5. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH	149
5.1 Conclusions	149
5.2 Contribution to the new knowledge	151
5.3 Recommendations for future work	152
REFERENCE	153
APPENDICES	174

اوینیورسیتی تیکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 : Parameter used to drill hybrid CFRP composites		24
Table 3.1 : Workpiece Specification		47
Table 3.2 : Cutting Tool Specification		49
Table 3.3 : HAAS CNC machine specification		53
Table 3.4 : The ranges and levels of drilling parameters for Taguchi OA.		69
Table 3.5 : Matrix planning for screening parameter		70
Table 3.6 :The ranges and levels of drilling for Box-Behnken Design (RSM)		71
Table 3.7 : Matrix planning using Box-Behnken design (RSM)		73
Table 4.1: Preliminary result on hole entry delamination		76
Table 4.2: Preliminary result on hole exit delamination		79
Table 4.3: Preliminary result on thrust force		82
Table 4.4: Preliminary result on surface roughness		86
Table 4.5 : The best level of screening process using Taguchi Arthogonal Array L27		90
Table 4.6 : Hole entry delamination result		94
Table 4.7 : Overall result of hole entry delamination result		95
Table 4.8 : Sequential model sum of squares analysis for entry delamination		96
Table 4.9 : Lack of fit tests for entry delamination		96
Table 4.10 : ANOVA result for hole entry delamination		98
Table 4.11: Hole exit delamination result		105
Table 4.12 : Overall result of hole exit delamination result		106
Table 4.13 : Sequential model sum of squares analysis for exit delamination		107
Table 4.14 : Lack of fit tests for exit delamination		107

Table 4.15 : ANOVA result for hole exit delamination	109
Table 4.16 : Thrust force result	116
Table 4.17 : Sequential model sum of squares analysis for thrust force	117
Table 4.18 : Lack of fit tests for thrust force	117
Table 4.19 : ANOVA result for thrust force	119
Table 4.20 : Surface roughness result	125
Table 4.21 : Overall result of surface roughness result	126
Table 4.22 : Sequential model sum of squares analysis for surface roughness	127
Table 4.23 : Lack of fit tests for surface roughness	127
Table 4.24 : ANOVA result for surface roughness	129
Table 4.25: Summary of modelling of 3D response surface plot	139
Table 4.26: Goal and constraint for the factors and responses on hole entry	140
Table 4.27 : Optimization Parameter generated by Design Expert Software (Hole Entry)	141
Table 4.28 : Goal and constraint for the factors and responses on Hole Exit	142
Table 4.29 : Optimization Parameter generated by Design Expert Software (Hole Exit)	142
Table 4.30 : Optimize design of drill bit	144
Table 4.31 : Validation result for hole entry delamination (mm ²)	146
Table 4.32 : Validation result for surface roughness (μm)	146
Table 4.33 : Validation result for thrust force (N)	146
Table 4.34 : Validation result for hole exit delamination (mm ²)	147
Table 4.35 : Validation result for surface roughness (μm)	148
Table 4.36 : Validation result for thrust force (N)	148
Table 5.1: Analysis of 3D response surface graph	150

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: CFRP in Aircraft (Bachmann <i>et al.</i> , 2017)		2
Figure 1.2 : Types of hole defect in drilling CFRP composite. (Xu <i>et al.</i> , 2018)		5
Figure 2.1 : (a) Stacking composites of Uni-directional (UD), (b) Multi-directional		12
Figure 2.2 : Configuration of Hybrid CFRP Composites (Wang <i>et al.</i> , 2021)		13
Figure 2.3 : CFRP application on Airbus aircraft overview (Breuer, 2016)		15
Figure 2.4 : The significant increase of composite application in aircraft trends		16
Figure 2.5 : The use of composites in the Boeing 787 (Brown, 2014)		18
Figure 2.6 : Schematic process of drilling composite material		20
Figure 2.7 : Research graph for feed rate and spindle speed		26
Figure 2.8 : Geometry of the twist drill (Aamir <i>et al.</i> , 2019)		27
Figure 2.9 : Research graph for helix angle and point angle		28
Figure 2.10 : Delamination classification on FRPs drilling (a) Peel-up delamination, and		31
Figure 2.11 : Demonstration of drilling leading to delamination at hole (a) entry and		32
Figure 2.12 : Example of thrust force and torque data (Matsumura and Tamura, 2013).		33
Figure 2.13 : Identification of tool wear in the drill bit.		36
Figure 3.1 : Project flow chart of research study		45
Figure 3.2 : (a) The dimensions of CFRP/Al panel (b) Actual panel		46
Figure 3.3 : Illustration of stacking sequence of the CFRP/Al panel		47
Figure 3.4 : SEM/EDS analysis for cutting tool material composition		48
Figure 3.5 : Image of drill bit (a) actual (b) two-dimensional (c) top view		50
Figure 3.6 : SEM/EDS analysis for cutting tool material composition		51

Figure 3.7 : HAAS CNC Machine	52
Figure 3.8 : The installation of drill bit on tool holder	54
Figure 3.9 : Final fixture assembly preparation	54
Figure 3.10 : Various penetration angle drilling of CFRP/Al laminates	55
Figure 3.11 : (a) Kistler Dynamometer type 5697A (b) control unit type 5233A	56
Figure 3.12 : Nikon SMZ-745 Stereo Microscope	57
Figure 3.13 : Portable Surface Roughness	58
Figure 3.14 : Nikon SMZ-745 Stereo Microscope setup	59
Figure 3.15 : Setup for binary option	60
Figure 3.16 : Setting the actual scale for the hole	61
Figure 3.17 : Setting the actual value for the hole	61
Figure 3.18 : Setting for the Wand (tracing) tool	62
Figure 3.19 : Setting for measure the area of the drill hole	62
Figure 3.20 : Delamination factor calculation F_d (Özdemir <i>et al.</i> , 2023)	63
Figure 3.21 : Delamination and flaking damages acceptable limits (AITM06-4022, 2024)	64
Figure 3.22 : Surface roughness tester Mitutoyo SJ-301	65
Figure 3.23 : Display screen of surface roughness value	66
Figure 3.24 : Experimental setup to acquire cutting forces with a Kistler dynamometer	67
Figure 3.25 : Sample graph of acquisition from DynoWare software	67
Figure 3.26 : (a) Geometry angle of drill bit (b) Penetration angle	72
Figure 4.1: Main effect plot for SN ratio of hole entry delamination result	78
Figure 4.2: Main effect plot for SN ratio of hole exit delamination results	81
Figure 4.3: Result of thrust force, N for all 27 runs	83
Figure 4.4: Main effect plot for SN ratio of thrust force	85

Figure 4.5 : Result of surface roughness, μm for all 27 runs	87
Figure 4.6 : Main effect plot for SN ratio of surface roughness	87
Figure 4.7 : Main effect plot for SN ratio of entry delamination, exit delamination, thrust force, surface roughness versus spindle speed, feed rate, penetration angle, helix angle, point angle	89
Figure 4.8 : Top view image of highest delamination (Run 3) and	93
Figure 4.9 : The diagnostic plot for hole entry delamination (mm^2) ;	100
Figure 4.10 : Interaction between the a) helix angle and point angle b) penetration angle and point angle c) penetration angle and helix angle	103
Figure 4.11 : The diagnostic plot for hole exit delamination (mm^2) ;	111
Figure 4.12 : Interaction between the a) helix angle and point angle b) penetration angle and point angle c) penetration angle and helix angle	113
Figure 4.13 : The diagnostic plot for thrust force (N);	120
Figure 4.14 : Interaction between the a) helix angle and point angle b) penetration angle and point angle c) penetration angle and helix angle	123
Figure 4.15 : The diagnostic plot for surface roughness (μm) ;	130
Figure 4.16 : Interaction between ; (a) helix angle and point angle (b) penetration angle and point angle (c) penetration angle and helix angle	133
Figure 4.17 : Hole Observation of Drill Design 5	136
Figure 4.18 : Hole Observation of Drill Design 3	137
Figure 4.19: Ramp function graph for the optimization	141
Figure 4.20 : Ramp function graph for the optimization	142
Figure 4.21 : Drill bit for optimization	144

LIST OF ABBREVIATIONS

CFRP	-	Carbon Fibre Reinforced Polymer
CFRP/Al	-	Carbon Fibre Reinforced Polymer/Alminum
CNC	-	Computer Numerical Control
ANOVA	-	Analysis of Variance
RSM	-	Response Surface Methodology
DOE	-	Design of Experiment
ISO	-	American Standard Test Method
S/N	-	Signal-to-Noise Ratio
SEM	-	Scanning Electron Microscopy
EDS	-	Energy-Dispersive Spectroscopy
WC	-	Tungsten Carbide
Co	-	Cobalt
Fe	-	Iron
C	-	Carbon
O	-	Oxygen
Al	-	Aluminium
F	-	Fluorine
SMSS	-	Sequential Model Sum of Squares

BBD - Box-Behnken Design

FEA - Finite Element Analysis

HV Vicker Hardness

LIST OF SYMBOLS

mm	-	Millimetre
mm/min	-	Millimetre per minute
mm/rev	-	Millimetre per revolution
rpm	-	Revolution per minute
$^{\circ}$	-	Degree (Angle)
F_d	-	Delamination Factor
A_{del}	-	Maximum Delaminated Area
A_o	-	Actual Hole Diameter
%	-	Percentage
μm	-	Micrometre
N	-	Newton
A	-	Area of Circle
πr^2	-	pi times the radius squared
F_x	-	force at x-direction
F_y	-	force at y-direction
F_z	-	force at z-direction
\emptyset	-	Diameter

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	: Technical Drawing of Carbide Drill with different Drill Geometry	174
Appendix B	: Top View of Hole Entry from Image J Software	179

LIST OF PUBLICATIONS

Proceeding Paper

1. Fatimatuzzahrah Arif, R. Balakrishnan, Mohd Sanusi, Mohd Hadzley, R. Izamshah, N. Ab Wahab, 2022. Finite Element Analysis on Influence of Drill Bit Geometry on Hole Accuracy in Drilling HCFRP. *Proceedings of International Innovative Research and Industrial Dialogue 2022 (iIRID '22)*, pp. 81 – 82. (Published)

Extended Abstract

1. Fatimatuzzahrah Arif, Lingges A/L Kumaran, Mohd Sanusi, 2023. Optimization of Machining Parameter in Drilling Carbon Fiber Reinforced Plastic (CFRP), *Colloquium On Manufacturing and Industrial Engineering 2023 (MIE2023)*. (Extended Abstract – Accepted in MIE 2023).

اوینیورسیتی تیکنیکال ملیسیا ملاک

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

This chapter provides an overview of the study's background, focusing on the influence of hybrid composite materials in the current industry. It includes a problem statement that highlights the industry's challenges, which prompted this experimental investigation. Therefore, this section will also present the research objectives, scope of study, significance of study and the thesis arrangement of the report.

1.1 Background of Study

Nowadays, composite materials such as Carbon Fibre Reinforced Plastic (CFRP) are widely used in machining industries such as, automotive, aerospace, marine industry, medical devices, and robotics. This demand is driven by CFRP's mechanical properties, which is much lighter than traditional metals like steel and aluminum (Xu and El Mansori, 2016). Therefore, its low density contributes to its high specific strength and is advantageous in industries where reducing weight is essential for performance and efficiency. Figure 1.1 shows that more than 50% of composites are used to make airframes in aerospace industry. In addition, hybrid CFRP is also frequently used in the machining industry. Therefore, my research focuses on CFRP/Al hybrid composite materials and their impact on high-quality assembly and drilling processes.

A hybrid type of CFRP/AL which consists of carbon fibre reinforcements with a secondary reinforcement that improves the fracture toughness and tensile elastic modulus is

still new in the machining field. The application of hybrid composites in the aerospace industry has increased due the combination of various matrix materials such as epoxy or carbon fibers offer a high strength-to-weight ratio. Therefore, it is ideal for aerospace applications where weight reduction is important for fuel efficiency and flight performance. According to Redouane Zitoune *et al.* (2012) and Wang *et al.* (2021), carbon fiber reinforced plastic/polymer (CFRP) and aluminum alloy (Al) is the best material in aircraft structures for weight reduction.

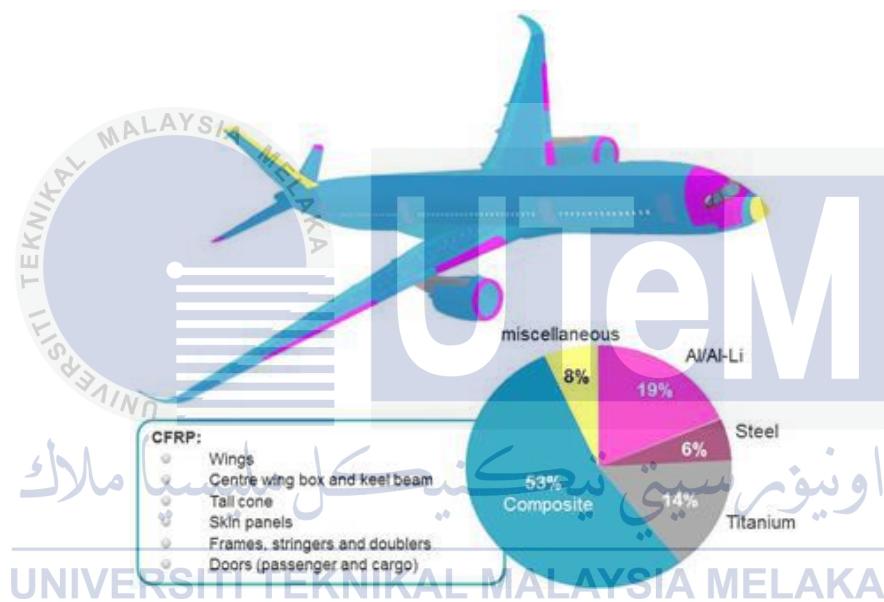


Figure 1.1: CFRP in Aircraft (Bachmann *et al.*, 2017)

Drilling on CFRP/AL material is a crucial assembly step in aircraft manufacturing. However, the anisotropic properties of CFRP/AL create major problem during the drilling process that been reportedly causes 60% of defective parts. Jia *et al.* (2016) mentioned that in drilling CFRP/Al, CFRP is a hard-to-cut material, where there is interaction on the composite material that causes defects during machining process. Decades ago, a lot of research was done on drilling CFRP/AL composites. Most of these studies are only focused on drill bit design and drill bit geometry, but there is no research that highlights the issue of