
12

Block Based Motion Vector Estimation
Using FUHS16, UHDS16 and

UHDS8 Algorithms for Video Sequence
S. S. S. Ranjit

Universiti Teknikal Malaysia Melaka (UTeM)
Malaysia

1. Introduction
1. Fast Unrestricted Hexagon Search (FUHS16) algorithm
In this section a short description about the Fast Unrestricted Hexagon Search (FUHS16)
algorithm for motion estimation development based on some of the existing algorithms that
have been discussed and simulated. Comparison of the performance among techniques is
conducted as part of experimental result preparation.
FUHS16 algorithm is developed based on 16 × 16 pixels in a block size and two different
models of hexagon sizes are applied to perform the motion vector search. Figure 1 shows
how a single frame is extracted into required block size, where in FUHS16 algorithm each
frame size is represented by 176 × 144 pixels. This means, that each frame will have 9 blocks
horizontally and 11 blocks vertically. Hence, there are 99 extracted blocks in a video frame.
Assumed has the following parameters i = horizontal (9 blocks),
 j = vertical (11 blocks),
 i = 1: (r / bsize),
 j = 1: (c / bsize),

where, r = 144, c = 176.
 B = Block,
 CF = current_frame,
 BZ = Block_Size

Eq. (1) shows the formula to extract the video frame into 16 × 16 block size.

 B=CF(1+BZ*(i-1):BZ*i,1+BZ*(j-1):BZ*j) (1)

2. Fast unrestricted hexagon search algorithm search procedure
In the first step, large hexagon search shape with seven checking points are used to perform
the search for the best-matched motion vector from the inner large hexagon search shape. If
the best-matched motion vector is found at the center of large hexagon, the large hexagon
search shape switches to small hexagon search shape that includes four checking points for
the focused inner search.

 Search Algorithms and Applications

226

Fig. 1. Extraction 16 × 16 and 8 × 8 Pixels Block Size from Single Frame

These four checking points are compared in order to determine the final best-matched
motion vector coordinate. Otherwise, the search continues around the point with the
smallest MAD by using the same large hexagon search shape. This process continues till the
large hexagon search shape moves along the direction of decreasing distortion. It is noted
that a small hexagon search shape is applied in the final step after the decreasing distortion
reaches optimum of the motion vector for large hexagon search shape. Then the small
hexagon search shape will focus on the final search for the best-matched motion vector
coordinate.
The proposed FUHS16 algorithm can be described further in the following three steps.
i. Starting
The large hexagon search shape with seven checking points are centered at (+8, +8) and it is
assumed as (0, 0). We name this as the predefined search window in the motion field. If the
smallest MAD point with best-matched motion vector is found to be at the center of the
large hexagon, we will proceed to Step (iii); otherwise Step (ii) will be proceed.
ii. Searching
Since the MAD point in the previous search step is not located at the center, a new large
hexagon search shape is formed to perform new checking. It confines of seven checking
points. Now the new MAD point is identified. If the MAD point is located at the center of
newly to form large hexagon search shape, we proceed to Step (iii); otherwise, this step is
repeated continuously till the next smallest MAD is again found at the center of large
hexagon search shape.
iii. Ending
For the final search, large hexagon search shape determines the best-matched motion vector
which is located at the center inner large hexagon search shape. After this, it will then switch
to the small hexagon search shape to perform the final best-matched motion vector
coordinate, MAD search point. The four points in the small hexagon search shape are
evaluated to compare with the current MAD point. The MAD point is the final solution of
best-matched motion vector coordinate location.
From the above procedure, it can be easily derived that the total number of search points per
frame are,

Block size

16

16

8

8

Block size

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

227

 ()16(,) 3 ,
x yFUHS m mN LHS SHS n= + + (2)

Where, (,)x ym m = final best-matched motion vector coordinate,

 n = number of execution of Step (ii),
 LHS = Large hexagon shape search points,
 SHS = Small hexagon shape search points.
In Figure 2, the motion vector is predicted at MAD4 after emerging 3 hexagon search shape.
Based on the Equation 2, the () 7 3(3) 4 20.

x yFUHS m m
N = + + = The FUHS16 needs 20 search

points to predict final best-matched motion vector at MAD4.
MAD0 is the starting search point in the large hexagon search shape, center at coordinate
(+8, +8) – it is then assumed as coordinate (0, 0). The outer six points in the large hexagon
search shape are evaluated to compare to the optimal MAD in the first search. If the optimal
MAD is found to be at the center, then small hexagon search shape will take place to focus
on the fine resolution search to predict the optimum motion vector in that area.
If the smallest MAD is found at one of the outer search point of large hexagon search shape,
then three new search points are emerged to form a new large hexagon search shape as
shows in Figure 2. The current optimal MAD is known as MAD1 and is positioned at the
center of newly form large hexagon search shape. The current coordinate of MAD1 is at (+7,
+10). All the points in the large hexagon search shape are again evaluated to predict the
optimal MAD in the second search.
In the second search, the optimal MAD is MAD2 which is located at one the six outer search
points. Again three new search points are emerged to form a new large hexagon search
shape and repositioned MAD2 to be at the center of newly formed large hexagon search
shape. The newly form large hexagon search shape is centered at coordinate (+6, +12). All
the search points surrounding the large hexagon search shape are evaluated again to predict
the optimal MAD.
In the third search, MAD3 is found at the outer search point of large hexagon search shape.
Three new search points are emerged to form a new large hexagon search shape and MAD3
is repositioned at the newly form large hexagons search shape. The new coordinate of
MAD3 is (+7, +14).
All the points surrounding the MAD3 are evaluated again (assigned with number 2) and the
optimal MAD is located at MAD3 which is at the center of the large hexagon search shape.
Then the small hexagon search shape will take place surrounding MAD3 to conduct fine
resolution search at the inner search. All the four points in the small hexagon search shape
are evaluated again to find the best-matched motion in that block. So, the MAD4 is the
optimal MAD found in the fine resolution search and is coordinated at (+8, +15).
The final coordinate is considered the best-matched motion vector coordinate in the block of
the current frame. This process is repeated in every single frame to predict the best-matched
motion estimation of a current frame.
The preliminary development of FUHS16 technique is described in this section. The FUHS16
technique is then used as a baseline to enhance or develop our next algorithm. The FUHS16
algorithm is simulated to obtain the motion vector estimation search point, performance
analysis compare to the other superior algorithms. The obtained results are analysed and the
algorithm has been improved with some changes. These changes will be further discussed
in next section.

 Search Algorithms and Applications

228

MAD4

MAD1

2 2

1

2

1

2

1

1 1

1

1

1

1

1

1 1

1

11

1

1

11

MAD0

MAD2

MAD3

Initially center (8,8) – assume as
at coordinate (0,0) - MAD0.

Fig. 2. Hexagon 3 new check points are formed and evaluated as new candidates to predict
the motion vectors

3. Unrestricted Hexagon Diamond Search (UHDS16) algorithm
This section starts with some modifications from the FUHS16 algorithm. In this section, the
UHDS16 technique is introduced. This technique is developed to have unrestricted search.
To achieve this, a simple and efficient fast block-matching algorithm based on hexagon-
diamond search shape is proposed. UHDS16 is designed uniquely with a large hexagon
shape and shrink diamond search step (SDSS). Large hexagon is more unique to identify the
motion vector in the small region of large hexagon shape. Finally, the shrink diamond
search step is to locate the best-matched motion vector in the large hexagon small region.
Experimental results show that the proposed UHDS16 algorithm significantly produces
smaller computation complexity.
The speed and accuracy of the rood pattern based search algorithm are highly related to the
size of the pattern. First step of the proposed method permits the algorithm to adapt itself to
the content of motion. In most cases, adjacent blocks belong to the same moving object that
has similar motions. Therefore, it is reasonable to predict the motion of current blocks from
motion vectors of adjacent blocks.

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

229

UHDS16 is designed to have repetitive search in the small region of large hexagon search
shape. The large hexagon search shape is to locate the best motion vector before switching to
shrink diamond search step for the final best-matched motion vector coordinate.
The UHDS algorithms are implemented using two different block sizes. Initially, the UHDS16
algorithm is developed using the 16 × 16 block size with search windows 15 × 15 and then the
same technique and ideology is used for 8 × 8 block size with search windows size 7 × 7. The
difference between UHDS16 algorithm and UHDS8 algorithm is the block size.
Figure 1 illustrates the extraction of 8 × 8 pixels block size from a single frame. The FUHS16
algorithm block extraction procedure is applied in the UHDS8 algorithm. This means, that
each frame will have 18 blocks horizontally and 22 blocks vertically.

4. Unrestricted Hexagon Diamond Search (UHDS16) and (UHDS8) algorithm
search procedure
Based on the switching strategy with two different shape searches in Figure 3, we develop
the following search methodology as depicted in Figure 4.
The UHDS algorithm employs two search procedures as depicted in Figure 3. Large
hexagon is assigned with a signed number ‘1’. The hexagon shape procedure is to locate the
final best-matched motion vector coordinate in the search area. The coarse hexagon shape
continues to search till the motion vector found in the hexagon area is an optimal MAD
point. This is then followed by the shrink diamond shape which checks all four points with
number assigned with ‘2’ in Figure 3. The four search points are evaluated and compared to
the center point in order to locate the final best-matched motion vector coordinate.
Figure 4 describes the basics of the UHDS16 and UHDS8 search algorithm. The number of
search points needed for UHDS16 and UHDS8 algorithm is 12. The large hexagon is
confined with seven outer search points, while the SDSS is confined with five search points.

Fig. 3. Hexagon-Diamond Search Modelling Shape

1 1

11

1 1

2

2

2

21

 Search Algorithms and Applications

230

Fig. 4. Motion Estimation Search Procedure of Unrestricted Hexagon Diamond Search
Algorithm
In the first step, seven checking points of the hexagon, within the search window around the
motion vector predictor are compared to obtain the best motion vector. MAD is positioned
at the center (0, 0) and served as a reference point to determine the final best motion vector
in the SDSS. If the MAD point is found to be at the center of the hexagon search, then the
hexagon search is switched to the small diamond search pattern for the final motion vector.
In the second step, MAD is the motion vector found by comparing the motion vector at step
one MAD. If the MAD point is not located at the center and has best motion vector
compared to the center one in step one, a new hexagon is formed and current MAD point

False

True

True

False

Step 1: Perform six points of hexagon shape, centered one point.

Optimal
MAD at
the center

Step 2: Continue large hexagon search for optimal MAD

Optimal
MAD at

the center

Step 3: The final four points covered by the small diamond are checked and
the new optimal MAD point is the final solution for the motion vector.

Finalize optimal MAD,
motion vector

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

231

becomes the center. All the six points surrounding MAD points will be compared again to
relocate the best motion vector before switching to the small diamond search step.
In the third step, SDSS will finalize the best motion vector and make comparison to
determine the greatest motion vector amongst the four MAD points. Otherwise, the second
step is repeated until the best optimal MAD distortion and best motion vector are found.

5. Peak Signal-to-Noise Ratio
The PSNR is a method used for objective quality comparison between two values for
different reconstructed images. It gives one measure of quality which is applied in image
processing perspective. PSNR analysis uses a standard mathematical model to measure the
difference between two images in video sequence. It is commonly used in the development
and analysis of algorithms, and comparing image quality between different compression
systems. The PSNR Equation (3) is mostly used as a measure of quality of reconstruction
within the compression of images. The peak in PSNR refers to the maximum pixel value.
The following formula is used to calculate the PSNR value:

 10
255 * 25510log

_
PSNR

MSD pred
= , (3)

The PSNR measured usually is in decibels (dB). The higher the PSNR, the better quality will
be produced for a compressed or reconstructed image.
Where

() () 2

1 2
,

, ,
_ M N

m n m nI I
MSD pred

N N

⎡ ⎤−⎣ ⎦
=

×

∑
. (4)

()1 ,m nI = pred_frame,

()2 ,m nI = current_frame,
N × N = block pixels.
Equation (4) describes the cumulative squared error between the compressed and the
reference image. If the value of Equation (4) is low, then the squared error accumulated will
be low.

5. Experimental result and discussion for FUHS16, UHDS16 and UHDS8
algorithm
This section describes about the experimental results for FUHS16, UHDS16, and UHDS8
algorithms. Each algorithm is conducted using ten different video sequences with size of 176
× 144 pixels. Each video sequence is represented with ten video frames for simulation
purposes. The experimental results are measured using the MATLAB and described
accordingly based on quality performance in terms of PSNR points, computational
complexity in terms of search points and elapsed processing time for each algorithm.

5.1 Results for FUHS16 and UHDS16 algorithm
In this section, results for FUHS16 and UHDS16 algorithm are presented. The presented
figures represent the original frame and predicted frame of “Claire” – Slow Motion (Lee et

 Search Algorithms and Applications

232

al., 2005), “News” – Slow Motion (Wu et al., 2010), “Mother” – Slow Motion (Yang et al.,
2007), “Salesman” – Large Motion (Shilpa et al., 2010), “Container” - Slow Motion (Wu et al.,
2010), “Coastguard” - Large Motion (Wu et al., 2010), “Foreman” – Medial Motion (Wang et
al., 2010), “Table Tennis” – Large Motion (Chen et al., 2002), “Akiyo” – Slow Motion (Wang
et al., 2008) and “Hall” – Slow Motion (Wu et al., 2010). Each of these video sequences have

Original Frame Predicted Frame
Claire

(a) (b)

(c)

Fig. 5.1. (a) Claire Original Frame; (b) Claire Predicted Frame and (c) Claire Frame Difference

MV = 8, 8 MV = (9,5) (10,7)(8,6)

Fig. 5.2. Search Points and PSNR Points for FUHS16 Algorithm (Claire)

MV = 8, 8 MV = (9,6) (10,10) (8,7)

Fig. 5.3. Search Points and PSNR Points for UHDS16 Algorithm (Claire)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

233

News

(a) (b)

(c)

Fig. 5.4. (a) News Original Frame; (b) News Predicted Frame and (c) News Frame Difference

MV = (8,8) MV = (10,6)(10,7)(9,7)

Fig. 5.5. Search Points and PSNR Points for FUHS16 Algorithm (News)

MV = (8,8) MV = (11,6) (8,9) (10,7)

Fig. 5.6. Search Points and PSNR Points for UHDS16 Algorithm (News)

 Search Algorithms and Applications

234

Mother

(a) (b)

(c)

Fig. 5.7. (a) Mother Original Frame; (b) Mother Predicted Frame and (c) Mother Frame
Difference

MV = (8,8) MV = (8,6)(10,7)(7,7)

Fig. 5.8. Search Points and PSNR Points for FUHS16 Algorithm (Mother)

MV = (8,8) MV = (8,6) (7,6) (7,7)

Fig. 5.9. Search Points and PSNR Points for UHDS16 Algorithm (Mother)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

235

Salesman

(a) (b)

(c)

Fig. 5.10. (a) Salesman Original Frame; (b) Salesman Predicted Frame and (c) Salesman
Frame Difference

MV = (8,8) MV =(9,5) (10,7) (8,6)

Fig. 5.11. Search Points and PSNR Points for FUHS16 Algorithm (Salesman)

MV = (8,8) MV =(9,5) (10,6) (8,6)

Fig. 5.12. Search Points and PSNR Points for UHDS16 Algorithm (Foreman)

 Search Algorithms and Applications

236

Container

(a) (b)

(c)

Fig. 5.13. (a) Container Original Frame; (b) Container Predicted Frame and (c) Container
Frame Difference

MV = (8,8) MV = (9,6) (10,7) (8,7)

Fig. 5.14. Search Points and PSNR Points for FUHS16 Algorithm (Container)

MV = (8,8) MV = (9,6) (10,6) (8,7)

Fig. 5.15. Search Points and PSNR Points for UHDS16 Algorithm (Container)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

237

Coastguard

(a) (b)

(c)

Fig. 5.16. (a) Coastguard Original Frame; (b) Coastguard Predicted Frame and
(c) Coastguard Frame Difference

MV = (8,8) MV = (9,5)(10,7)(8,6)

Fig. 5.17. Search Points and PSNR Points for FUHS16 Algorithm (Coastguard)

MV = (8,8) MV = (9,5)(10,7)(8,6)

Fig. 5.18. Search Points and PSNR Points for UHDS16 Algorithm (Coastguard)

 Search Algorithms and Applications

238

Foreman

(a) (b)

(c)

Fig. 5.19. (a) Foreman Original Frame; (b) Foreman Predicted Frame and (c) Foreman Frame
Difference

MV = (8,8) MV= (8,6) (10,7) (7,7)

Fig. 5.20. Search Points and PSNR Points for FUHS16 Algorithm (Foreman)

MV = (8,8) MV= (8,6) (10,7) (7,7)

Fig. 5.21. Search Points and PSNR Points for UHDS16 Algorithm (Foreman)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

239

Table Tennis

(a) (b)

(c)

Fig. 5.22. (a) Table Tennis Original Frame; (b) Table Tennis Predicted Frame and (c) Table
Tennis Frame Difference

MV = (8,8) MV = (10,7) (10,7) (9,8)

Fig. 5.23. Search Points and PSNR Points for FUHS16 Algorithm (Table Tennis)

MV = (8,8) MV = (5,14) (5,14) (4,15)

Fig. 5.24. Search Points and PSNR Points for UHDS16 Algorithm (Table Tennis)

 Search Algorithms and Applications

240

Akiyo

(a) (b)

(c)

Fig. 5.25. (a) Akiyo Original Frame; (b) Akiyo Predicted Frame and (c) Akiyo Frame
Difference

MV = (8,8) MV = (9,6) (10,7) (8,7)

Fig. 5.26. Search Points and PSNR Points for FUHS16 Algorithm (Akiyo)

MV = (8,8) MV = (9,6) (10,7) (8,7)

Fig. 5.27. Search Points and PSNR Points for UHDS16 Algorithm (Akiyo)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

241

Hall

(a) (b)

(c)

Fig. 5.28. (a) Hall Original Frame; (b) Hall Predicted Frame and (c) Hall Frame Difference

MV = (8,8) MV = (9,6) (10,7) (8,7)

Fig. 5.29. Search Points and PSNR Points for FUHS16 Algorithm (Hall)

MV = (8,8) MV = (9,6) (10,7) (8,7)

Fig. 5.30. Search Points and PSNR Points for UHDS16 Algorithm (Hall)

 Search Algorithms and Applications

242

300 raw video frames, the video format of Quarter Common Intermediate Format (QCIF) and
can be categories into different motion varying from small to large. Based on the presented
results, original frame and predicted frame is not similar to the matched frame. This is to
reveal that there is object translation between the original frame and predicted frame.
The motion vector coordinates shown are for ten video frames that have been conducted in
FUHS16 and UHDS16 algorithm. Based on each vector coordinate, the motion represents the
object translation between two frames. The first coordinate shows the first search of large
hexagon shape, second vector coordinate represents the repetitive search of large hexagon
shape and the best-matched motion vector coordinate represent the search for small
hexagon shape. The repetitive search of large hexagon search is to gauge for the best-
matched zero motion in the large hexagon region. While the small hexagon shape will
finalized the best-matched motion vector coordinate among the four search points in the
small region.
The results shown in Table 1 are the average PSNR points for FS, NTSS, TSS, DS, HEXBS,
FUHS16 and UHDS16 algorithms. The average PSNR points values for all ten video
sequences. These results are used for analysis purposes and for further improvement.

Average PSNR Points (dB)
Algorithms FS TSS NTSS DS HEXBS FUHS16 UHDS16
Claire 39.93 38.91 38.91 39.04 39.20 39.23 39.89
News 37.65 36.95 37.26 37.34 37.35 37.21 37.57
Mother 43.21 42.70 42.70 42.79 42.75 42.70 42.92
Salesman 37.20 36.40 36.55 36.74 36.66 36.57 37.07
Container 40.02 40.02 40.02 40.02 40.02 40.02 40.02
Coastguard 33.11 31.00 31.03 31.09 31.03 31.00 33.11
Foreman 26.40 24.25 24.78 24.46 25.76 25.74 26.28
Tennis 32.47 26.39 28.00 27.52 28.95 29.26 29.07
Akiyo 47.06 47.06 47.06 47.06 47.05 47.05 47.06
Hall 40.30 40.29 40.30 40.30 40.29 40.29 40.30

Table 1. Average PSNR Points
Based on the average PSNR points, FUHS16 and UHDS16 algorithms produces similar
PSNR points compared with the other algorithms. However, UHDS16 algorithm shows
significant improvement in measuring the average PSNR point’s compares with FUHS16
algorithm.
UHDS16 algorithm has outperformed all the other algorithms except for the FS algorithm in
terms of PSNR point measurement. The overall average PSNR point’s difference between
UHDS16 and FS algorithm is approximately 0.31 dB. The importance to calculate the overall
average PSNR points is to show the individual comparison of each algorithm.
Table 2 presents average search points for FS, TSS, NTSS, DS, HEXBS, FUHS16 and UHDS16
algorithms. The average search points calculated are for 990 blocks for ten video frames. As
shown, FUHS16 algorithm and UHDS16 algorithm have the same number of average search
points as HEXBS algorithm to obtain the similar algorithm performance with all the other
algorithms. FUHS16 algorithm and UHDS16 algorithm have approximately improved 2
search points (17 percent) in terms of motion vector search points compared with DS
algorithm. FS algorithm requires 213 extra search points (94.7 percent), TSS requires 13 extr

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

243

Average Search Points
Algorithms FS TSS NTSS DS HEXBS FUHS16 UHDS16
Claire 225 25 27 14 12 12 12
News 225 25 25 14 12 12 12
Mother 225 25 25 14 12 12 12
Salesman 225 25 25 14 12 12 12
Container 225 25 25 14 12 12 12
Coastguard 225 25 25 14 12 12 12
Foreman 225 25 25 14 12 12 12
Tennis 225 25 28 14 12 12 12
Akiyo 225 25 25 14 12 12 12
Hall 225 25 26 14 12 12 12

Table 2. Average Search Points
a search points (52 percent) and NTSS requires 16 extra search points (57.1 percent) to gauge
the similar motion vector coordinate as FUHS16 algorithm and UHDS16 algorithm.
Based on average PSNR points and average search points, FUHS16 algorithm and UHDS16
algorithm maintains the similar PSNR point’s quality even though the search points are
reduced 94.7 percent compare with FS algorithm. This also shows that reducing the search
points can still maintain the similar performance and quality compare with the other
algorithms. And, reducing the search points also reduces the computational complexity in
terms of the MAD calculation (search points) and increases the best-matched motion vector
coordinate estimation performances.
Table 3 shows the average elapsed processing time taken for FS, TSS, NTSS, DS, HEXBS,
FUHS16 and UHDS16 algorithms. Based on the presented result, UHDS16 algorithm has the
lowest average elapsed processing time compared with all the other algorithms. FUHS16
algorithm saved a small relative average elapsed processing time compared with HEXBS
algorithm and DS algorithm. UHDS16 algorithm and FUHS16 algorithm approximately
saved 14 percent, 23 percent and 55 percent of average elapsed processing time compared
with NTSS, TSS and FS algorithms respectively. The result for UHDS16 algorithm shows,
even though the search points are reduced and repetitive search pattern is developed, the
average elapsed processing time still can be reduced.

Average Elapsed Processing Time (Sec)
Algorithms FS TSS NTSS DS HEXBS FUHS16 UHDS16
Claire 3.28 1.86 1.70 1.63 1.55 1.53 1.47
News 3.14 1.84 1.77 1.63 1.58 1.61 1.45
Mother 3.58 2.01 1.71 1.68 1.59 1.62 1.38
Salesman 3.38 1.88 1.74 1.62 1.61 1.61 1.48
Container 2.86 2.02 1.92 1.72 1.70 1.64 1.53
Coastguard 3.23 1.81 1.77 1.64 1.62 1.64 1.46
Foreman 3.42 1.84 1.77 1.70 1.68 1.69 1.49
Tennis 3.61 2.00 1.74 1.70 1.59 1.49 1.43
Akiyo 3.48 1.81 1.61 1.59 1.57 1.57 1.46
Hall 2.96 2.08 1.79 1.65 1.55 1.54 1.43

Table 3. Average Elapsed Processing Time

 Search Algorithms and Applications

244

5.2 Results for UHDS8 Algorithm
In order to evaluate the performance of UHDS8 algorithm, the UHDS8 algorithm is
compared with the FS, TSS, NTSS, DS, and HEXBS algorithms in terms of the average PSNR
points, computation complexity in terms of average search points and average elapsed
processing time.

Original Frame Predicted Frame

Claire

(a) (b)

(c)

Fig. 5.31. (a) Claire Original Frame; (b) Claire Predicted Frame and (c) Claire Frame
Difference

MV = (4,4) MV = (5,2) (6,4) (4,3)

Fig. 5.32. Search Points and PSNR Points for UHDS8 Algorithm (Claire)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

245

News

(a) (b)

(c)

Fig. 5.33. (a) News Original Frame; (b) News Predicted Frame and (c) News Frame
Difference

MV = (4,4) MV = (5,2) (5,2) (2,4)

Fig. 5.34. Search Points and PSNR Points for UHDS8 Algorithm (News)

 Search Algorithms and Applications

246

Mother

(a) (b)

(c)

Fig. 5.35. (a) Mother Original Frame; (b) Mother Predicted Frame and (c) Mother Frame
Difference

MV = (4,4) MV = (4,2) (3,2) (3,3)

Fig. 5.36. Search Points and PSNR Points for UHDS8 Algorithm (Mother)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

247

Salesman

(a) (b)

(c)

Fig. 5.37. (a) Salesman Original Frame; (b) Salesman Predicted Frame and (c) Salesman
Frame Difference

MV = (4,4) MV = (5,2) (5,2) (2,4)

Fig. 5.38. Search Points and PSNR Points for UHDS8 Algorithm (Salesman)

 Search Algorithms and Applications

248

Container

(a) (b)

(c)

Fig. 5.39. (a) Container Original Frame; (b) Container Predicted Frame and (c) Container
Frame Difference

MV = (4,4) MV = (5,2) (5,3) (4,3)

Fig. 5.40. Search Points and PSNR Points for UHDS8 Algorithm (Container)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

249

Coastguard

(a) (b)

(c)

Fig. 5.41. (a) Coastguard Original Frame; (b) Coastguard Predicted Frame and (c)
Coastguard Frame Difference

MV = (4,4) MV = (5,2) (6,4) (4,3)

Fig. 5.42. Search Points and PSNR Points for UHDS8 Algorithm (Coastguard)

 Search Algorithms and Applications

250

Foreman

(a) (b)

(c)

Fig. 5.43. (a) Foreman Original Frame; (b) Foreman Predicted Frame and (c) Foreman Frame
Difference

MV = (4,4) MV= (4,3) (5,-5) (3,4)

Fig. 5.44. Search Points and PSNR Points for UHDS8 Algorithm (Foreman)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

251

Table Tennis

(a) (b)

(c)

Fig. 5.45. (a) Table Tennis Original Frame; (b) Table Tennis Predicted Frame and (c) Table
Tennis Frame Difference

MV = (4,4) MV = (5,2) (5,2) (2,4)

Fig. 5.46. Search Points and PSNR Points for UHDS8 Algorithm (Table Tennis)

 Search Algorithms and Applications

252

Akiyo

(a) (b)

(c)

Fig. 5.47. (a) Akiyo Original Frame; (b) Akiyo Predicted Frame and (c) Akiyo Frame
Difference

MV = (4,4) MV = (5,2) (6,4) (3,6)

Fig. 5.48. Search Points and PSNR Points for UHDS8 Algorithm (Akiyo)

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

253

Hall

(a) (b)

(c)

Fig. 5.49. (a) Hall Original Frame; (b) Hall Predicted Frame and (c) Hall Frame Difference

MV = (4,4) MV = (4,2) (5,4) (4,3)

Fig. 5.50. Search Points and PSNR Points for UHDS8 Algorithm (Hall)

 Search Algorithms and Applications

254

In this section, the proposed UHDS8 algorithm is compared with the popular FS, NTSS, TSS,
DS, HEXBS and FUHS8 algorithms. In the first stage, ten video frames from each video
sequence are used to simulate the coded algorithm. The results using UHDS8 algorithm and
all the other algorithms are shown in Table 4 for average PSNR points, Table 5 for average
search points and Table 6 for average elapsed processing time.

Average PSNR Point (dB)
Algorithms FS NTSS TSS DS HEXBS UHDS8
Claire 40.46 38.91 38.91 39.47 39.48 39.76
News 38.47 37.46 36.95 37.69 37.72 37.73
Mother 43.88 42.72 42.69 42.89 43.22 43.29
Salesman 38.11 36.83 36.40 36.80 36.82 37.48
Container 40.03 40.02 40.02 40.02 40.02 40.03
Coastguard 33.95 31.16 30.10 31.16 32.98 33.94
Foreman 28.40 25.06 24.25 25.01 27.65 27.96
Tennis 32.64 27.10 26.40 28. 60 29.05 29.15
Akiyo 47.48 47.06 47.06 47.25 47.28 47.42
Hall 40.45 40.34 40.29 40.30 40.31 40.31

Table 4. Average PSNR Points
Table 4 shows the average PSNR points for FS, TSS, NTSS, DS, HEXBS, FUHS8 and UHDS8
algorithms. The FS algorithm has the most promising result among all the developed
algorithms. This is because FS algorithm does brute search among all the search points. In
Table 5.4, the average PSNR points shows that the UHDS8 algorithm improves the average
PSNR points compared with the NTSS, TSS, DS, HEXBS, and FUHS8 algorithms. Analysis
shows “Claire” video sequence have improved 0.13 dB of average PSNR point’s compared
with HEXBS algorithm and DS algorithm. While, “Coastguard” have improved
approximately 3 dB of average PSNR point’s compared with TSS, NTSS and DS algorithms.
“Akiyo” and “Container” video sequences produces the similar average PSNR point’s
compared with all the other algorithms. The average PSNR points for “Salesman” and
“Tennis” video sequences also improved approximately to 0.55 dB compared with all the
other algorithms. This shows that UHDS8 algorithm can also produce similar average PSNR
points compared with FS algorithm while locating the best-matched motion vector
coordinate.
Based on the ten video sequences overall average PSNR points, UHDS8 algorithm and
FUHS8 algorithm have slightly improved the performance compared with the NTSS, TSS,
DS and HEXBS algorithms. The overall average PSNR points analysis shows that UHDS8
algorithm have outperformed all the other algorithms except for FS algorithm. The overall
average PSNR point’s difference between UHDS8 algorithm and FS algorithm is
approximately 0.68 dB.

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

255

Referring to the Table 5, FUHS8, UHDS8 and HEXBS algorithms have the lowest average
search points compared with all the other algorithms. FS and TSS algorithms have 49 and 25
fixed search points respectively. Meanwhile NTSS algorithm search point ranging from 25 to
33 and DS algorithm has 14 search points.
Based on the average search points obtained from Table 5, FS algorithm needs to perform
extra numbers of MAD calculations in order to determine the optimal MAD point. This will
lead to extra usage of memory and consume 52 percent of extra processing time to predict
the similar image as UHDS8 algorithm. UHDS8 algorithm reduces search points and
elapsed processing time to perform all the MAD calculations in order to estimate the MAD
point.
Hence, this shows that UHDS8 algorithm have the ability to reduce the elapsed processing
time while maintaining the global optimal point properties of the image. Besides that, the
UHDS8 algorithm approximately can save up to 37 search points compared with FS
algorithm, 2 search points compared with DS algorithm, 13 search points compared with
TSS algorithm and 21 search points compared with NTSS algorithm. This shows that the
UHDS8 algorithm requires less MAD calculation and save memory approximately up to
75.5 percent compared with all the other algorithms.
Table 6 shows the elapsed processing time compared with FS algorithm. UHDS8 algorithm
has the lowest average elapsed processing time compared with TSS, NTSS, DS, and HEXBS
algorithms. Thus, Table 6 reveals that UHDS8 algorithm approximately has saved 40
percent of processing time compared with FS algorithm. Meanwhile, TSS, NTSS, DS and
HEXBS algorithms approximately saved 21 percent, 19 percent and 29 percent average
elapsed processing time respectively.

Average search points
Algorithms FS TSS NTSS DS HEXBS UHDS8
Claire 49 25 26.99 14.70 12 12
News 49 25 25.55 14.27 12 12
Mother 49 25 26.42 14.90 12 12
Salesman 49 25 25.16 14.20 12 12
Container 49 25 25.06 14.00 12 12
Coastguard 49 25 25.00 14.00 12 12
Foreman 49 25 25.37 14.22 12 12
Tennis 49 25 26.81 14.36 12 12
Akiyo 49 25 25.00 14.01 12 12
Hall 49 25 25.78 14.00 12 12

Table 5. Average Search Points
This shows that FS algorithm approximately consumes 31 percent extra computational
complexity in terms of search points compared with UHDS8 algorithm. Even though the

 Search Algorithms and Applications

256

average elapsed processing time produced by UHDS8 algorithm is almost similar as FUHS8
algorithm, but UHDS8 algorithm average elapsed processing time is slightly faster. UHDS8
algorithm approximately saved 3 percent of average elapsed processing time compared with
UHDS8 algorithm. TSS algorithm and NTSS algorithm shows increment of 14 percent and
18 percent average elapsed processing time respectively.

Average Elapsed Processing Time (Sec)
Algorithms FS TSS NTSS DS HEXBS UHDS8
Claire 2.84 1.86 1.65 1.53 1.34 1.21
News 2.77 1.75 1.63 1.59 1.37 1.19
Mother 2.92 1.91 1.71 1.67 1.37 1.12
Salesman 2.72 1.82 1.68 1.59 1.39 1.22
Container 2.93 1.94 1.82 1.65 1.47 1.28
Coastguard 3.01 1.89 1.80 1.67 1.42 1.22
Foreman 2.99 1.86 1.66 1.59 1.41 1.19
Tennis 3.11 1.81 1.61 1.52 1.35 1.23
Akiyo 2.97 1.80 1.59 1.54 1.32 1.17
Hall 2.89 1.98 1.69 1.55 1.36 1.20

Table 6. Average Elapsed Processing Time

6. Conclusion
Motion vector estimation is the processes which generates the motion vectors to determine
how each motion compensated prediction frame is created from the previous frame. Motion
estimation is basically extracting the difference between the reference frame compared with
the current frame. Motion vectors are typically used to compress the frame by storing the
changes in the current frame. The vectors are used to detect and track the motion and to find
the information required in the current frame. In this thesis, the previously developed
algorithms were investigated and new algorithms were to design to compare the
performance with the discussed algorithms.
Five most widely known motion estimation algorithms such as the full search, three step
search, new three step search, diamond search and hexagon based search algorithms were
explicated. All of these algorithms are reported to be the baseline algorithms in block-
matching motion estimation algorithm development. These algorithms are studied to
understand the basis of block-matching motion estimation. The motion vector is determined
using the motion estimation block prediction. The knowledge is used to develop the
proposed algorithm.
The motion estimation technique is developed to detect the motion in the video sequences.
Each of the video sequence applied in the proposed algorithms have motion varies from

Block Based Motion Vector Estimation Using FUHS16, UHDS16
and UHDS8 Algorithms for Video Sequence

257

slow to fast. All the discussed algorithms are simulated using all the different type’s video
motion. The purpose of testing each algorithm with different kind of motions is to test the
algorithms robustness. This also will explain that each algorithm is suitable to perform
motion vector estimation based on different type of motions.
Based on this research and the findings of this study with baseline models, FUHS16
algorithm is selected as the basic algorithm for the proposed algorithm. Other proposed
algorithms are used for comparison with all the superior algorithms. Fewer search points,
less computational complexity and time savings was consequently proposed.
Validation of results involved three categories which are image PSNR points, computational
complexity in terms of search points and elapsed processing time. In this thesis, the
proposed algorithms are developed to have similar result as FS algorithm while out
performing the other TSS, NTSS, DS and HEXBS algorithms. Additionally, measuring the
PSNR points of each proposed algorithm is to determine the efficiency of the proposed
algorithm. Based on the accumulated results, the proposed algorithms which are FUHS16,
FUHS8, UHDS16 and UHDS8 have improved the search point efficiency and effectively
have saved the elapsed processing time. This leads to lesser computational complexity when
motion estimation prediction is done.
The proposed algorithm shows favorable characteristics for use in a real-world system. The
PSNR point’s measurements are similar or equal to that achieved using FS algorithm motion
estimation block. Furthermore, the PSNR points measurement achieved by the proposed
algorithm has outperformed the TSS, NTSS, DS and HEXBS algorithms. As in section 5.2,
the UHDS8 algorithm has very close PSNR points measurement as compared with FS
algorithm. Besides that, UHDS8 algorithm has also saved 94.7 percent of the computational
complexity in terms of search points. The UHDS8 algorithm has also saved approximately
57 percent of the elapsed processing time to estimate the best-matched block compared with
the FS algorithm. The numbers of memory accesses required during operation were also
reduced.

7. References
Chen, M. J., Chu, M. C., and Pan, C. W. (2002). Efficient motion-estimation algorithm for

reduced frame-rate. IEEE Transactions on Circuit and Systems for Video Technology,
 12(4), 269 – 275.

Lee, J. K. & Chung, K. D. (2005). Conversion Scheme DCT-Domain Transcoding of MPEG-2
 to H.264/AVC. International conference on image analysis and processing, pp. 551-558,
 3617, Italy, September, 2005, Springerlink, Cagliari.

Shilpa, P. M. & Sanjay, N. T. (2010). Fast Motion Estimation Using Modified Orthogonal
 Search Algorithm for Video Compression. Journal of Signal, Image and Video
 Processing, 4(1), 123-128.

Wang, P., Zheng, Z. & Li L. (2008). A video watermarking scheme based on motion
 vectors and mode selection. International Conference on Computer Science and Software
 Engineering, 5, 233-237.

Wu, H., Mark C., and Robert K. (2010). A study of video motion and scene complexity.
[Online]. Available: ftp://ftp.cs.wpi.edu/pub/techreports/pdf/06-19.pdf [2010,
July 14].

 Search Algorithms and Applications

258

Yang, K. C., Clark C. G., Pankaj K. D. & Khaled El-M. (2007). Perceptual Temporal Quality
Metric for Compressed Video. Journal Multimedia, Vol.9, No. 7, 1528-1535.

