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a  b  s  t  r  a  c  t

Large-scale  neural  correlates  of  auditory  selective  attention  reflected  in  the  electroencephalogram  (EEG)
have  been  identified  by  using  the  complex  wavelet-phase  stability  measure  (WPS).  In this  paper,  we
study  the  feasibility  of  using  this  amplitude  independent  measure,  the  WPS  in  extracting  the  correlates
of  attention  by  comparing  its  performance  to  the  widely  used  linear  interdependency  measures,  i.e.,
vailable online 2 July 2011

eywords:
avelet phase-stability

uditory selective attention
avelet coherence

the wavelet  coherence  and  the  correlation  coefficient.  The  outcome  reveals  that  the  WPS  outperforms
the  other  two  measures  in  discriminating  both  the  attended  and  unattended  single  sweep  auditory  late
responses  (ALRs).  It is concluded  that  the  proposed  WPS  provides  a  faster  (in  terms  of  less  sweeps  which
are required)  and  robust  objective  quantification  of  selective  attention.

© 2011 Elsevier Inc. All rights reserved.

orrelation coefficient

. Introduction

Electroencephalogram (EEG) synchronization provides crucial
nformation to understand the higher cognitive and neuronal
rocesses [14,63,68].  In [59] it is argued that EEG phase syn-
hronization reflects the exact timing of the communication
etween distant but functionally connected neural populations, the
xchange of information between global and local neuronal net-
orks, and the sequential temporal activity of neural processes in

esponse to external stimuli (refer [59] for a detailed review).
Event-related potentials (ERPs) are widely used in the studies

f neuronal synchronization associated with several higher cog-
itive processes (for example, [9,21,36,39,72]). In contrast to the
nalysis of averaged potentials, the amplitude information of sin-
le sweep event-related potentials turned out to be fragile in some
ases [10,30].  For instance, large amplitude fluctuations can eas-
ly be introduced by slight accidental changes in the measurement
etup over time. Since EEG signals exhibit a high degree of variance
rom one sweep to another, even robust amplitude independent
ynchronization measures such as the time-scale entropy, which

as been used in an automated detection scheme for the ˇ-wave
65] can hardly be applied to assess the synchronization stability
f the EEG sweeps. In order to address this issue, we have pro-

∗ Corresponding author. Tel.: +49 6841 1624090; fax: +49 6841 1624092.
E-mail address: strauss@snn-unit.de (D.J. Strauss).

361-9230/$ – see front matter ©  2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.brainresbull.2011.06.012
posed a novel approach to identify the neural correlates of auditory
selective attention which employs wavelet-based measure that
highlights the phase information of the EEG exclusively.

The importance of the phase in signals has been emphasized by
Oppenheim and Lim [46,20] using the Fourier representation. They
applied numerical experiments to illustrate the similarity between
a signal and its only phase-reserved reconstruction. More recently,
the significance of phases in the continuous wavelet representa-
tion of analytic signals has also been shown [16]. Besides that, a
statistical interpretation of the usefulness of phase information in
signal and image reconstructions has been given [44]. Particularly,
authors in [44] have demonstrated that a random distortion of the
phases can dramatically distort the reconstructed signal, while a
random distortion of the magnitudes will not. Results from these
studies reveal that the phase of a signal contains much more impor-
tant information compared to the amplitude, as a signal can be
reconstructed without suffering from a significant degradation of
the quality by using solely the phase information.

Methods which make use of phase information have been
suggested in examining the synchronization processes related to
different cognitive functions. For example, a measure called phase-
locking statistics (PLS) or value (PLV) which was proposed by
Lachaux has gained much popularity in quantifying the phase

coupling over distance (i.e., signals from different sites of the
brain) [2,32].  Meanwhile, bi-coherence or cross-frequency phase
synchronization indices have been developed to evaluate phase
synchronization across different frequencies [45,47,60,62]. In our

dx.doi.org/10.1016/j.brainresbull.2011.06.012
http://www.sciencedirect.com/science/journal/03619230
http://www.elsevier.com/locate/brainresbull
mailto:strauss@snn-unit.de
dx.doi.org/10.1016/j.brainresbull.2011.06.012
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tudy, the wavelet-phase stability (WPS) is used to analyze the
ynchronization process that is locked to the onset of the sensory
timulation.

Generally, the extraction of the EEG phase can be done via two
losely related approaches: the Hilbert transform (or analytic sig-
al approach) and the wavelet transform. As pointed out by most
f the studies, the performance of both methods is comparable
8,28,50,53]. However, the Hilbert phase and Hilbert amplitude
ave direct physical meaning only for narrow band signals [5,6].
eanwhile, the wavelet transform can be thought as equivalent

o band-pass filtering of the signal, which makes the pre-filtering
nnecessary. A review of using wavelets for EEG analysis can be
ound in [58].

The main goal of this study is to investigate the feasibility of
sing an amplitude independent measure, i.e., the WPS  in extract-

ng large-scale neural correlates of selective auditory attention
eflected in auditory late responses (ALRs). Here, a performance
omparison of the WPS  with the wavelet coherence and correlation
oefficient is presented. This is done by examining and comparing
he moving mean of the three measures, i.e., moving mean phase
tability, moving mean wavelet coherence and moving mean cor-
elation coefficient. It is noted that our study was focused on the
1 wave of the ALR due to its common use in paradigms related to
uditory attention [22,25,40,41,70] and it is anatomically associ-
ted with the auditory cortex [18,69].  Results show that the phase
easure outperforms the others, since significantly fewer sweeps

re needed to discriminate the attended and unattended single
weeps ALRs.

. Methods

.1. Subjects and experimental setup

A total of 10 student volunteers (with mean age of 26.7 years and standard devi-
tion of 2.5, 4 females) from Saarland University entered the study. All subjects were
iven the informed consent prior to their participation and the experiments were
onducted in accordance with the Declaration of Helsinki. The maximum entropy
uditory paradigm was  used (more details can be found in [34]). For each exper-
ment, subjects performed the attention task (i.e., detecting the target tones in a
eries of three different tones) for a length of 10 min  followed by another 10 min of
elaxing (with no attention).

ALRs were acquired by using a commercially available bioamplifier (g.tec
SBamp, Guger Technologies Austria) with a sampling frequency of 512 Hz. Single

weeps (i.e., individual responses to tones) were recorded from the electrodes placed
t the right mastoid (Reference), the vertex (EEG channel), and the upper forehead
Ground). Electrodes impedances were strictly maintained below 5 k� in all mea-
urements. The data obtained was bandpass-filtered with a FIR filter with cut-off
requencies of 1–30 Hz. An additional artifact filter was  used to remove responses
hat  exceeded 50 �V.

.2. Wavelet-phase stability (WPS)

We  employed the time-scale coherence measures based on the complex wavelet
ransform, which take the non-stationary nature of evoked potentials into account
n  contrast to conventional coherence based on the frequency information alone,
ee [32]. This wavelet coherence increases with the correlation of the envelopes
etween two  signals as well as if their phases show smaller variations in time [32].
he quality and stability of the response over the stimulus sequences are evaluated
n  terms of the time-resolved phase information.

For the determination of the phase stability, we  need an adaptation of
he derived phase locking measure between two  signals to our problem. Let

s,� (·) = | s | −1/2 ((· − �)/s), where   ∈ L2(R) is the wavelet satisfying the admissibil-
ty  criterion: 0 < C =

∫
R

(|�(ω)|2/|ω|)dω < ∞,  where C denotes the admissibility

onstant, �(ω) is the Fourier transform of the wavelet  ,  s, � ∈ R, s /=  0, and L2(R)
enotes the Hilbert space of all square integrable functions. The wavelet transform
 : L2(R) → L2(R2, (dsd�/s2)) of a signal f ∈ L2(R) with respect to the wavelet   is

iven by the inner L2-product:
W f )(s, �) = 〈f,  s,� 〉L2 . (1)

From the equation, we  can see that the wavelet transform expands functions in
erms of wavelets  s,� (·), which are generated in the form of translations (or time-
hift, denoted as �) and dilations (or scales, denoted as s) of a fixed function called
h Bulletin 86 (2011) 110– 117 111

the mother wavelet  .  Note that the scale s can always be associated with a pseudo-
frequency Fa in Hz by:

Fa = F 
s�
. (2)

Here  � is the sampling period and F is the center frequency of the wavelet  
[1].

According to [64], the phase stability of a sequence F = {fm ∈ L2(R) : m =
1,  . . . , M}  of M sweeps �s,� is defined by:

�s,� (F)  = 1
M

∣∣∣∣∣

M∑

m=1

eıarg((W fm)(s,�))

∣∣∣∣∣
. (3)

Eq.  (3) yields a value in the range of 0 and 1. We  have a perfect phase stability
for  a particular s and � for �s,� = 1 and a decreasing stability for smaller values due
to  jittering. Let us introduce the phase arg((W g)(s, �)) of a virtual reference signal
g  in Eq. (3) which is constant for all m in scale and time. Then we obtain the phase
difference eı(arg(W fm)(s,�))−arg((W g)(s,�)) ) but the result for the stability remains the
same. Although this is obvious in a mathematical sense, this experiment easily shows
the  relation of our stability criteria to phase locking measures of two  signals and
oscillators as in [57] or [32].

In fact, �s,� (F)  measures the degree of clustering of the angular distribution
for certain s and � of M sweeps. Fig. 1 illustrates the concept of the wavelet-phase
stability measure. As depicted in the figure, a series of 10 EEG sweeps was simu-
lated according to the phase resetting theory with zero jittering; this is shown in
Fig.  1(a). All EEG sweeps were transformed into complex values by using a com-
plex wavelet. Each small circle plotted on the unit circle in Fig. 1(b) represents the
complex value of an EEG sweep (from Fig. 1(a)) for s = 40 and � = 50. Since the phase
values (the arguments of the complex numbers) are concentrated in a narrow inter-
val,  the wavelet-phase stability gives a high value of 0.9701. On the other hand,
Fig. 1(c) shows 10 EEG sweeps simulated according to the phase resetting theory
with 20 samples jittering. The small circles which are plotted on the unit circle in
Fig.  1(d) represent the complex values of the transformed EEGs for s = 40 and � = 50.
In this case, the phase values are widely distributed and thus the wavelet-phase
stability gives a low value of 0.2501.

In order to observe the evolution of the measure over the sweeps, we defined a
moving mean wavelet-phase stability as a function of m sweeps as in the following
equation:

�ms,� (F)  = 1
m

∣∣∣∣∣

m∑

n=1

eıarg((W fn)(s,�))

∣∣∣∣∣
, m = 1, . . . , M. (4)

2.3. Wavelet coherence (WC)

Wavelet coherence was first introduced by [31] and has been commonly used in
evaluating synchronization in EEG [15,29,33,50].  Furthermore, it has recently been
used  for a reliable detection of auditory habituation [38]. It is noted that the wavelet
coherence measure that we applied here is adopted from [38], which is similar to
[31].

For  x, y ∈ L2(R), the wavelet coherence of two signals x and y, 	ı, (· , ·) with a fix
smoothing parameter ı ∈ R  > 0 and the wavelet   is defined as the cross-wavelet
spectrum of the two  signals normalized by their corresponding auto-spectra:

(	ı, x, y)(s, �) =

∣∣(
ı, x, y)(s, �)
∣∣

√
(
ı, x, x)(s, �)(
ı, y, y)(s, �)

. (5)

Then, the inter-sweep wavelet coherence of a sequence F = {fm ∈ L2(R) : m =
1,  . . . , M − 1} of M − 1 sweeps is defined as:

�m(F, s, �) = (	ı, (s, �)fm, fm+1), m = 1, . . . , M − 1. (6)

Finally, from the inter-sweep wavelet coherence in Eq. (6) we defined the mov-
ing  mean wavelet coherence in a similar way to the moving mean wavelet-phase
stability:

ϒm(F, s, �) = 1
m

m∑

n=1

�n(F, s, �), m = 1, . . . , M − 1. (7)

2.4.  Correlation coefficient (CC)
Often, the correlation coefficient is more specifically referred to as the Pearson’s
correlation coefficient, or Pearson Product–moment correlation coefficient. It is a
measure of the linear relationship between the two signals and has been used in the
EEG synchronization investigations. For a sequence F = {fm ∈ L2(R) : m = 1, . . . , M}
with M sweeps let Ferp denote the average of the sequence F;  the moving mean cor-
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n  the unit circle represent the complex values of the EEG sweeps in (c) for s = 40 an

elation coefficient of the sequence F and Ferp is defined in terms of their covariance
ov and standard deviations 
, as seen below:

m(F)  = cov(fm, Ferp)

fm
Ferp

, m = 1, . . . , M,  (8)

here fm = (1/m)
∑m

n=1
fn, m = 1, . . . , M.

This gives a value in [− 1, 1]. If there is no relationship between the two signals
hen the correlation coefficient will be 0; if there is a perfect positive match it will
e  1. If there is a perfect inverse relationship, then the correlation coefficient will be
1.  The significance level (i.e., p-value) is calculated by transforming the correlation

o create a t statistic having n − 2 degrees of freedom, where n is the number of
ubjects.

. Results

We used the 4th derivative of the complex Gaussian function
s wavelet in all analyses. The scale parameter s was chosen as
0. Note that the scale can be associated with a pseudo frequency
f 6.4 Hz (based on Eq. (2)). For this scale, the temporal resolu-
ion is rather satisfactory and the differences in this frequency
and are also clearly noticeable [64]. Regarding the translation
arameter �, we considered the interval of 70–120 ms  where the
1 wave appeared. The neural activity reflected in this wave

s presumably associated with the auditory cortex [18,69] and
t is commonly used in paradigms related to auditory attention
22,25,42,70].

Fig. 2(a) shows the grand averaged of the normalized mov-
ng mean wavelet-phase stability for the target tones from the

aximum entropy paradigm experiments and its corresponding sig-
ificant test results (i.e., one–way ANOVA). It is noted that the

orizontal dashed lines on the right of the figure indicates the sig-
ificant level p < 0.05. As one can observe, only as few as seven
weeps are needed to significantly discriminate the attended and
nattended conditions.
50. The wavelet-phase stability gives a low value of 0.2390.

Regarding the evaluation which uses the moving mean wavelet
coherence, the smoothing parameter ı was set to 20 as in [38] since
we study the same interval of interest. The outcome is shown in
Fig. 2(b). In general, the performance of the wavelet coherence is not
encouraging. Based on the figure, although the wavelet coherence
of the target tones shows a significance difference at certain sweeps,
the difference is fluctuating over the sweeps.

The result of using the correlation coefficient as synchroniza-
tion measure is illustrated in Fig. 2(c). The graph shows the results
for both attended and unattended sweeps and the p-values are
computed by using the t-test. At least 23 sweeps are required to
differentiate significantly the attended and unattended conditions
for the target tones.

The outcome from the moving mean wavelet-phase stabil-
ity measure is very motivating, therefore it is also interesting to
observe the time domain signals. Fig. 3(a) shows the normalized
wavelet-phase stability for the first seven sweeps and Fig. 3(b)
depicts the averaged of the first seven ALRs. The correlation coef-
ficient of the averaged attended ALRs and averaged unattended
ALRs is calculated as 0.5750 and it implies a significant association
between these two  signals (t-test, p < 0.05).

4. Discussion

The use of the wavelet-phase stability measure which focuses
on the phase in evaluating the synchronization of auditory late
responses has been reinforced by comparing its performance to the
wavelet coherence and correlation coefficient methods. The extrac-

tion of the phase in our study was  done by employing the complex
wavelet transform that provides a view of the scale versus time
behavior (so-called time-scale) of the signal and therefore has great
potential in analyzing non-stationary brain signals.
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Fig. 2. The grand averaged of the (a) normalized moving mean wavelet-phase stability, (b) moving mean wavelet coherence, (c) moving mean correlation coefficient and
their  corresponding significance test results for the target tones at the N1 wave. Note that the horizontal dashed line in the figure (right) indicates the significant level p < 0.05.
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Fig. 5. Demonstration of the phase stability measure on the simulated EEG data.
(a)  EEG data generated based on the phase reset theory. (b) Phase stability of the
data in (a). (c) EEG data generated according to the additive theory with different
amplitudes. (d) Phase stability of the data in (c).
esembles the attention data. The interval of the N1 wave is shown in the figure by
he  two  vertical dotted lines.

We  have recently shown that the wavelet-phase stability of
LR sequences provides an objective quantification of the tinnitus
ecompensation and allows for a reliable discrimination between

 group of compensated and decompensated tinnitus patients [64].
or control subjects, the measure is able to distinguish between
he groups of attention and no-attention [34]. In the present study,

 performance comparison of the wavelet-phase stability with
he well-known wavelet coherence and widely used correlation
oefficient using the experimental data acquired from the control
ubjects is demonstrated. Results reveal that the proposed phase

easure performs better than the other two measures by means

f less sweeps which are required to differentiate the attentional
onditions.
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ig. 6. The grand averaged of the first 200 stimulus for both attended and unatten
oving mean wavelet-phase stability, (b) moving mean amplitude of the N1 wave

 < 0.05.

Typically, a large number of ALR sweeps is used in identify-
ng neural correlates of auditory selective attention due to a poor
ignal-to-noise ratio. For example, in studies that were conducted
y the groups of Picton [48], Keating [27], Hillyard [22–24],  Näätä-
en [41,42],  and Woldorff [70,73,71],  as well as other recent studies,
.g., [9,36,43], the number of sweeps that has been used is typi-
ally more than 100. Some studies even analyzed more than 1000
weeps. This has led to a lengthy EEG recording and processing
ime. Furthermore, subjects are easily exhausted during the task
erforming.

On the other hand, a number of studies in the field of EEG syn-
hronization use the coherence measure. However, it is argued that

oherence cannot be regarded as a specific measure of synchro-
ization [2,32,66]. Related to this, a phase synchronization concept

ntroduced by [56] states that a small coupling of the oscillators1

1 Neurons are weakly coupled non-identical oscillators [11–13,49].
nditions and its corresponding significant test results by using the (a) normalized
 that the horizontal dashed line in the figure (right) indicates the significant level

causes an adjustment of their phases, while the amplitudes remain
uncorrelated and chaotic. This concept is based on the well-known
fact that weak coupling first affects the phases of oscillators, not
their amplitudes. As we know, coherence does not separate the
effects of covariance of the amplitude waveforms and of the phases
of two oscillatory signals. Since the core of the synchronization
is the adjustment of phases and not of amplitudes, it should be
detected by a measure neglecting amplitude variations. In signal
processing, it has been shown that the phase in signals plays a cru-
cial role in the signal representation and reconstruction by using
the Fourier transform [20,46],  the continuous wavelet transform
[16], and statistics methods [44]. Altogether, the related litera-
ture strongly suggests that the phase information is prevailing over
amplitude.

Critical discussions among the researchers about the ERP gen-

esis have led to the emergence of a theory called oscillatory
model.  This theory argues that the ERP is not independent from
ongoing cortical processes, but rather, is generated by phase
synchronization and partial phase resetting of ongoing activities
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3,4,17,19,26,37,51,52,61,67].  This is in contrast to the traditional
ssumption that the ERP is generated by time-locked, stimulus-
ocked, and synchronized activity of a group of neurons that added
o the background EEG. For example, the spectral power of unaver-
ged EEG data appears to be independent of auditory stimulation,
uggesting that ERRs result from reorganization of ongoing activ-
ty rather than from additional activity being triggered by the
timulus [61]. Furthermore, the power of cortical oscillations at
–13 Hz has been shown to correlate with the amplitude of ERRs
7,55,54].

More important, it is highlighted by the authors in [59] that the
EG phase synchronization reflects the exact timing of communi-
ation between distant but functionally related neural populations,
he exchange of the information between global and local neuronal
etworks, and the sequential temporal activity of neural processes

n response to incoming sensory stimuli. So, the phase of ongoing
EG oscillations (certain frequencies) must undergo resetting (or
ealignment) due to the exogenous (i.e., physical properties of the
ncoming auditory stimulations) as well as endogenous processes
i.e., during the performance of the attentional task). Therefore,

ethods to analyze the phase of the EEG are more desirable and
roper because phase values might contain crucial and meaningful

nformation related to cognitive processes.
In relation to this, we reinforced the important role of the EEG

hase in the generation of ALR through an inverse time-scale anal-
sis [35]. The results are reproduced and shown in Fig. 4. In part
a) the grand averaged of the original attended data as well as
ts phase-modified reconstruction is depicted. The phases of the
EGs at the theta–alpha border (6–10 Hz) were stabilized. As illus-
rated in the figure, an enlargement of the N1 wave for attended
ata after the phase stabilization is apparent and it is significantly
ifferent from the original signal (p < 0.05). In addition, the rela-
ionship between attended data and unattended data was studied
y resetting the phase of unattended data at the theta border to
he mean phase of attended data at the same frequency range.

e found that the amplitude of the N1 wave is enlarged and
he result looks similar to the attended data. This is shown in
ig. 4(b).

In order to gain more insights of the phase-stability measure, we
valuated the measure using signals with known properties. Hence,
e generated the EEG data based on two well-known theories of

he ERP genesis: phase reset and additive (also known as evoked)
odels. To recapitulate, the additive model articulates that the

ndependent responses (i.e., those which are triggered by the exper-
mental events of interest) are added to the ongoing EEG (that is
onsidered as “noise”). On the other hand, the phase-resetting the-
ry states that the experimental events reset the phase of ongoing
scillations. Fig. 5 shows the simulated ERPs and the corresponding
hase stability evaluation results. We  observe that the phase stabil-

ty decreases with a larger phase jittering of single sweeps (Fig. 5(a)
nd (b)). Meanwhile, EEGs with different amplitudes have the same
hase behavior (Fig. 5(c) and (d)). These indicate that the phase sta-
ility measure is sensitive only to the phase of the data, but not to
he amplitude changes. In addition, by using the obtained EEG data,
e compared the evaluation of the WPS  with the amplitude for the
rst 200 ALR sweeps. The result is depicted in Fig. 6. It is observed
hat p-values of the WPS  are more stable and always less than 0.05
after 48 sweeps). This shows that the WPS  is more reliable than
he amplitude in discriminating the two attentional conditions.
his is in line with the fact that we have mentioned before that
he amplitude information of single sweep event-related poten-
ials turned out to be fragile in certain cases. Therefore, it is not

uitable and not efficient to be used as a synchronization measure.
ore importantly, the finding again shows that the WPS  is a mea-

ure which is independent from the influence of signal amplitude
uctuations.

[

[
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5. Conclusion

The proposed measure based on the phase information con-
structed from the complex wavelet transform can be used in
extracting the large-scale neural correlates of auditory selective
attention. In particular, the wavelet-phase stability of ALRs allows
for a reliable discrimination of the attentional conditions compared
to the widely used wavelet coherence and correlation coefficient
methods. The number of response sweeps that are needed to per-
form the differentiation is largely reduced by using the proposed
measure especially for the target tones. The findings highlight
the significance of the phase information from brain activities as
it might reveal considerably useful hints about the neural activ-
ity related to cognitive processes per se. It is concluded that the
wavelet-phase stability is feasible to be used as objective evaluation
of the large-scale neural correlates of auditory selective attention
as a synchronization measure.
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