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Abstract— A design of dual-band high-impedance surface 
called Artificial Magnetic Conductor (AMC) is presented. The 
AMC is designed to resonate at 0.92GHz and 2.45GHz. In this 
paper also, the design parameters that influence the AMC 
frequencies are discussed. The designed AMC then is 
incorporated with the designed triple-band printed dipole 
antenna (operating at 0.92GHz, 2.45GHz and 5.8GHz). Here, the 
performance of the dipole antenna with 2 and 4 unit cells of 
0.92GHz and 2.45GHz AMC ground plane are presented. The 
reported results show that, by applying the AMC structure as a 
ground plane for the printed dipole antenna, the gain of the 
dipole antenna can be increased due to the attracting feature of 
the AMC surface that provide in-phase reflected waves with the 
incident waves. 

I. INTRODUCTION 
Perfect Magnetic Conductor (PMC) does not exist in 

nature, thus it is known as an Artificial Magnetic Conductor 
(AMC) and exhibits as a PMC at a certain frequency band [1].  
For design and analysis purposes, the AMC is characterized 
by its reflection magnitude and phase. At AMC resonant 
frequency, its magnitude and phase is +1 and 0° respectively. 
In addition, at its operating band, the surface impedance of an 
AMC is very high, so it also called a high-impedance surface 
(HIS) structure. Several AMC designs can be found in [2] and 
the brief explanation about the simulation set-up for the HIS 
can be obtained in [3]. Reference [4] proposed the wideband 
millimeter wave AMC by using a grounded Frequency 
Selective Surface (FSS) array of various slot dimensions. The 
AMC is useful for passive radio frequency identification 
(RFID) when it is acts as a ground plane to the dipole tag 
antenna to enable the dipole tag is mountable on the metallic 
objects. Thus, designing AMC for frequency below 1GHz is 
quite challenging when intended to be used for UHF RFID 
due to their size and thickness constraints [5]. A dipole tag 
antenna mountable on metallic objects using AMC for 
wireless identification was invented in [6]. In this paper, the 
proposed AMC as a ground plane for the printed dipole 
antenna are planar, simple, ease to fabricate (no vias) and no 
multilayer substrates are required. This is the extension 
research from [7], which is a triple-band printed dipole 
antenna was proposed and the single-band AMC was used as a 
ground plane for the designed dipole antenna.  

 

II. A UNIT CELL OF DUAL-BAND AMC 
A unit cell of the periodic structures is shown in Fig. 

1 and its reflection phase graph is plotted in Fig. 2. This 
structure has a rectangular slot in the patch. The slot in the 
patch can be used to meander the currents and create the 
multiple resonances. The inductance is produced from the 
length of the slot while the capacitance is originated from the 
width of the slot. Referring to Fig. 2, two operating bands of 
AMC are obtained. The lower AMC band is at 0.88GHz-
0.98GHz and the upper AMC band is 2.40GHz-2.48GHz. 
These operating bands are obtained when the reflection phase 
is ±90° . The strong evidences are found when the plotted 
surface impedance of the AMC-HIS structure is high at both 
resonant frequencies shown in Fig. 3. 

 

 
 
Fig. 1  A unit cell of 0.92GHz and 2.45GHz AMC (unit cell size = 64mm x 
32mm, the main rectangular-patch size = 62mm x 29.5mm, the second 
rectangular-patch size = 31.5mm x14.5mm, slot width = 1mm) 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Reflection phase graph of the periodic structures studied in Fig. 1 
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Fig. 4 Graph of reflecti
patch length 

The graph of reflection phase with different values of 
main rectangular-patch length (here g is also varied along the 
x-axis) can be seen in Fig. 4. From this figure, it can be 
concluded that the lower resonant frequency can be shifted to 
higher frequencies by decreasing the lp1.  

As expected, by maintaining the other values the upper 
AMC frequency can be shifted to the higher frequencies by 
decreasing the second or inner rectangular patch length. 
However, the computed AMC bandwidth at the upper band is 
remained same, 2.9% for three simulated points.  
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Fig. 5 Graph of reflection phase with different values of second rectangular-
patch length  
 

From Fig. 6, it shows that the upper AMC frequency 
also can be varied by varying the width of the rectangular slot. 
However, no major effect is observed at the lower resonant 
frequency. From the plotted graph, it is found that the 
simulated upper AMC frequency is 2.41GHz when ws is 
0.75mm and 2.47GHz when ws is 1.25mm. Fig. 7 plots the 
reflection phase graph for three different points of gap 
between the unit cells along the x-axis, gx. In spite of varying 
the main patch length, the lower operating band also can be 
varied by varying the gap between the elements along the x-
axis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Graph of reflection phase with different values of slot width  
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Fig. 7 Graph of reflection phase with different values of gap size 

IV. TRIPLE-BAND MEANDERED DIPOLE ANTENNA 

The simulated and measured return loss of fabricated 
triple-band meandered dipole antenna (see Fig. 8) is plotted in 
Fig. 9. The second dipole radiating element is meandered to 
reduce the antenna size as well as the prime radiating dipole 
element. The antenna is designed to radiate at ultra-high 
frequency (UHF; 0.92GHz,) and microwave frequencies 
(MWF; 2.45GHz and 5.8GHz). The computed bandwidth of 
the antenna is 0.12GHz, 0.07GHz and 0.4GHz at each band. 
The antenna is fabricated on the Taconic substrate which has a 
permittivity and thickness of 3.54 and 0.508mm respectively. 

 

.  
 

Fig. 8  Fabricated triple-band dipole-type antenna 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9  Simulated and measured return loss of the dipole antenna 

V. TRIPLE-BAND DIPOLE ANTENNA WITH DUAL-BAND AMC 

In this part, the performance of the dipole antenna is 
studied at 0.92GHz and 2.45GHz with absent of AMC layer 
placed at the bottom of the dipole substrate and followed by 
the dipole antenna with 2 and 4 unit cells of dual-band AMC 

as shown in Fig. 10(a) and Fig. 10(b). The dimension of dual-
band 2x1 and 2x2 rectangular-patch with rectangular slot 
AMC is 132mm x 34mm and 132mm x 66mm respectively.  

 

 
(a) 

 

 
(b) 

Fig. 10  Triple-band meandered dipole antenna incorporated with: (a) 2x1 and 
(b) 2x2 rectangular-patch with rectangular slot AMC 
 

Table I and Table II compare the antenna’s performance in 
terms of return loss and realized gain for dipole antenna, 
dipole antenna with 2x1 and 2x2 dual-band AMC ground 
planes. As can be seen, the dipole antenna is still operated 
well at the desired frequencies and the gain is increased at 
0.92GHz and 2.45GHz. The increment of gain is recorded for 
dipole antenna with 2 unit cells of the AMC structure and the 
gain is getting higher with the increment of unit cells. 

TABLE I.     THE PERFORMANCE OF DIPOLE ANTENNA AT 0.92GHZ 

 Return 
loss 
(dB) 

Realized 
gain 
(dB) 

Calculated 
reading 
distance 
(m) 

Measured 
reading 
distance 
(m) 

Triple-band 
meandered 
dipole antenna 

 
-11.15 

 
1.49 

 
5.90 

 
4.00 

Antenna with 
2x1 rectangular 
patch with 
rectangular slot 
AMC GP 

 
 
 

-19.79 

 
 
 

4.41 

 
 
 

8.55 

 
 
 

5.75 

Antenna with 
2x2 rectangular 
patch with 
rectangular slot 
AMC GP 

 
 
 

-17.05 

 
 
 

5.19 

 
 
 

9.30 

 
 
 

7.00 
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TABLE II.  THE PERFORMANCE OF DIPOLE ANTENNA AT 2.45GHz 

 
The reading distance of the dipole tag (when the antenna is 

feeding with the microchip at the centre of the antenna) is 
calculated using the Frii’s formula. In order to validate the 
calculated one, the reading distance of the tag is measured 
using UHF RFID Gen2 reader module and microwave 2.45 
GHz RFID readers. The measurement of the reading distance 
is performed in free space environment. The difference 
between the calculated and measured reading distance is due 
to the mismatch between the antenna and microchip, 
conductor and cable losses and environment factor. 

From Fig. 11(a) and Fig. 11(b), the measured power 
received at the first and second band dipole antenna can be 
compared. There are clearly shows that the power received of 
the dipole antenna with AMC ground plane provides higher 
value compared to the dipole antenna with no high impedance 
structure.  
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Fig. 11  Measured power received of the triple-band meandered dipole 
antenna with and without AMC ground planes at the (a) first and (b) second 
band of dipole antenna 

VI. CONCLUSION 

The AMC is useful as a ground plane for the printed 
dipole antenna. The gain of the antenna is increased due to the 
attracting feature of the AMC that provides in-phase reflected 
waves with the incident waves. Furthermore, the recorded data 
show that, higher antenna gain can be obtained with more 
AMC structures. In total, the longer reading distance of the 
dipole tag antenna is achieved with AMC GP. 
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loss 
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Realized 
gain 
(dB) 

Calculated 
reading 
distance 
(m) 

Measured 
reading 
distance 
(m) 

Triple-band 
meandered 
dipole antenna 

 
-12.44 

 
1.44 

 
1.32 

 
0.80 

Antenna with 
2x1 rectangular 
patch with 
rectangular slot 
AMC GP 
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3.87 
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Antenna with 
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