
LEARNING THROUGH PRACTICE VIA ROLE-PLAYING: LESSONS
LEARNT

Sabrina Ahmad, Emaliana Kasmuri, Noor Azilah Muda, Azah Kamilah Muda
Universiti Teknikal Malaysia Melaka (MALAYSIA)

sabrinaahmad@utem.edu.my, emaliana@utem.edu.my, azilah@utem.edu.my,
azah@utem.edu.my

Abstract
Software engineering is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machine. Sound software
engineering closely related with socio-technical activity that depends on several human issues which
are communication, collaboration, motivation, work environment, team harmony, engagement, training
and education. These issues affect everything for students to fully understand software engineering
and be prepared for software development careers. Therefore courses offered in the university must
also consider the sociological and communication aspects, often called the socio-technical aspects.
One popular method is to use role-playing exercises. Role-playing is a less technologically elaborate
form of simulation for learning interpersonal skills and is analogous to rehearsal. It is particularly
helpful when students are having difficulties to relate lessons learnt in the university to the applicability
of the knowledge in the real implementation. This is because many students view software
engineering as meaningless bureaucracy and have little interest in the knowledge delivered in the
lecture hall. This scenario impedes the expansion of current knowledge and inhibits the possibility of
knowledge exploration to solve range of industry problems. Simply lecturing about software
engineering will never engage students or convince them that software engineering has value. Given
this student bias, the goal of teaching software engineering often becomes convincing students that it
has value. To achieve this, students need to experience firsthand the sociological and communication
difficulties associated with developing software systems. In this paper, we argue that in teaching
software engineering we must cover two essential things; delivery of knowledge and skills required in
the software engineering domain in a form of lecture and hands-on practice to experience the value of
the knowledge and skills learnt. We report on our experiences gained in deploying role-playing in
master degree program. Role-playing is used as pedagogical tool to give students a greater
appreciation of the range of issues and problems associated with software engineering in real settings.
We believe that the lessons learnt from this exercise will be valuable for those interested in advancing
software engineering education and training.

Keywords: Role-playing, higher education, software engineering.

1 INTRODUCTION
University education plays a dominant role in shaping principles and values of the field. In a field as
rapidly growing as software engineering, the principles and values are being shaped jointly by
university and industry influences. This is due to the commonalities and differences of underlying
theory and industry practice in software engineering. Since information processing has become an
essential part of the way society manages their life and also a key to industrial power, the need of
having an appropriate software engineering education is crucial.

1.1 Software Engineering Education
It is a challenging endeavour to design software engineering curriculum, especially to computer
science majors. Computer science curriculum tends to focus on the technical side of the field whereby
students spend most of their time in courses about theoretical and programming aspects of computer
science. This often led to a stereotype mind set of thinking programming is the most important
component of the degree. By the time students arrive at an upper division of software engineering
course, they often believe that writing code is all it takes to build a large software system. Thus,
students have a difficult time believing that software engineering topics are important. The high level
software engineering courses such as project management, software architecture and requirements

Proceedings of EDULEARN12 Conference.
2nd-4th July 2012, Barcelona, Spain.

ISBN: 978-84-695-3491-5
5069

engineering are always seen as theoretical knowledge with minor impact to the real practice in
industry [2]. This is because simply lecturing about software engineering will not engage students or
convince them that software engineering has value. Given this student bias, the goal of teaching
software engineering often becomes convincing students that it has value. To achieve this, students
need to experience firsthand the sociological and communication difficulties associated with
developing software systems.

1.2 Active Learning
Software engineering cannot be taught exclusively in the classroom. This is because software
engineering is a competence and not just a body of knowledge. Any presentation of principles or
experience that is not backed up by active and regular participation by students in real projects is sure
to miss the essence of what the students need to learn.

Donald Schon [5] presents evidence that experts in a range of professions from architecture to
psychoanalysis exhibit what he calls reflection-in-action. Expertise, according to Schon, is the interplay
of two competencies; core competencies that permit the practitioner to act respond effectively in
familiar problem situations, and reflective skills that let the practitioner reasons about his or her skills
and knowledge when the most immediate course of action seems likely to be unsuccessful. Translated
into software engineering, Schon distinction is between the type of competence that a designer uses
when making design decisions and the type of competence that leads to reason about the design
method itself. Skills of the first type can be taught through lecture and by applying through small
exercises. On the other hand, skills of the second type are extremely difficult to teach by instruction,
because their effective deployment depends on the practitioner being sensitive to a wide range of
contextual effects; some of them are not within the field of engineering at all.

Educating this awareness, and knowing when to use a rigorous technique and when to trust one’s
instinct, is something that can only be learned through experience. Typically, a student’s first
experience on software development project is via an intern position or his/her first full-time position.
However, prior exposure to the corporate project environment would greatly improve a student’s
performance in industry. In order to develop students for successful careers in software engineering,
specifically for software development, they must be immersed not only in the software development
lifecycle and paradigms, but also in the workings of project teams.

Following Introduction, Section 2 explains the existence of variety of pedagogical tools for higher
education and how role playing fit in into the curriculum. This is followed by Section 3 which discusses
curriculum model with role playing elements. Section 4 elaborates lessons’ learnt from the perspective
of students and Section 5 is the conclusion.

2 ROLE-PLAYING AS A PEDAGOGICAL TOOL
The pedagogy of education often refers to the strategies of education or instructive strategies [4]. In
outcome based education (OBE), the instructors have the freedom to choose and select the contents
and methods of teaching to help the students achieve the learning outcomes of the subjects. There
are several methods of delivering knowledge to students and among them are Problem-based
Learning (PBL) and Cooperative Learning (CL).

Problem-based learning is a pedagogical tool that concentrates on ill-structured problems. The
problem to be solved usually is a complex question, task, or issue that needs resolution through
inquiry. It is a realistic problem in a relevant context, especially if the knowledge gained is to be
applied later. Solution of the problem usually includes a range of alternatives that are established
through the application of new knowledge and reasoning, not just simple formulas. The role of the
instructor is to guide and facilitate, rather than as the source of knowledge or as an information-giver
[3].

Cooperative learning on the other hand is a method of instructing students to work together in groups,
usually with the goal of completing a specific task. This method can help students develop leadership
skills and the ability to work with others as a team. The five basic elements of cooperative learning as
described by [6] are:

a) Positive Interdependence

b) Individual and Group Accountability

5070

c) Interpersonal and Small Group Skills

d) Face-to-Face Promotive Interaction

e) Group Processing

Compared to problem-based learning, cooperative learning method is seen to be more appropriate to
suit the content of Software Engineering courses in classrooms. Not only because the course itself is
too broad and abstract, the technique used to attract students to participate and delivers the
knowledge should also be creative and interesting. One of the techniques often used in the
cooperative learning is the collaborative inquiry or also known as role playing, which highlights the
distribution of roles leads to interdependent as well as individual responsibility with a team. Role play
is a method where someone rehearses situations for future performances and to improve his or her
ability within a role. It is also a less technically elaborate form of simulation to learn interpersonal skills
and need not much of rehearsal in order to be applied [7].

As described by [2], Software Engineering field is a difficult and has more theoretical elements than
the technical elements. Because of its nature, it is hard to deliver the related subjects in classrooms
and often, the goal of delivering the knowledge becomes convincing student that the field has its own
value. Observing this, the adoption of role-playing method is appropriate where the method is applied
to let the students experience themselves in learning and valuing the contents of the subjects related
to the broad topic of Software Engineering. By letting the students take roles as the key persons
involved in simulating the software engineering project, they will experience all the sociological and
communication difficulties associating with the real world software system development. While facing
the difficulties, the students involved will creatively impersonate the roles they are playing to find
resolutions to the facing problems. This indirectly will give them firsthand experience to face the reality
of real world environment in software engineering field.

To further explain the role playing method, Software Engineering subject is chosen to simulate the
subject contents where the students act as developers and end-users. The simulation process is to
capture requirements from end users where the outcome of this simulation is the requirements
specification report or Software Requirement Specification (SRS). In the role-playing method, students
are divided into two groups: a) developers (programmer, system analyst and data administrators) and
users (stakeholders and end-users). The developer captures the requirements from users by using
several methods that are interviews, observations and document analysis. The users on the other
hand act as individuals or interviewees who will explain the current business processers and flow of
the current system. This is to make the developers understand the current business flow and then can
capture the requirements of the to-be developed system.

In the role-playing process, the students involved are given the guidelines and instructions from the
instructor and the outcomes of the method are clearly explained. With the guidance from the
instructor, the students will take part in the simulation with the objective of producing the SRS
document as the outcome of the role-playing method.

3 THE CURRICULUM MODEL
The curriculum structure in Centre for Advanced Software Engineering (CASE) is divided into three
major structures, which are delivery of modules, industrial trainings and final project (Figure 1). The
duration to complete the curriculum is 18 months. The structure covers both theoretical and practical
parts of software development process.

Semester 1 Semester 2

Delivery of
Modules 1

Industrial
Training 1

Delivery of
Modules 2

Final

Project

Industrial
Training 2

Figure 1: Curriculum Structure for MSc (Real Time Software Engineering) at CASE

5071

3.1 Delivery of Modules
The structure of modules delivery covers the whole life cycle of software development phases
including its supporting activities. Each modules represent individual phases in the software
development and the supporting activities which includes software requirement and analysis, software
design, software implementation, software configuration, software testing, project management and
software quality assurance. The duration for each module is approximately one week. The duration
was sufficient to cover end-to-end content for each module. The modules cover theoretical practical
(hands-on exercises) aspects for each phase in the software development life cycle. In the end the
students have to sit for their final exam and pass the papers to prove their sound theoretical
knowledge in software engineering.

3.2 Final Project
The students need to develop a final project entitled On Board Auto-Cruise System. The project is to
develop a software module to simulate an auto cruise system of a car using object oriented as the
selected software development approach in AIX environment using C++. The project is using RUP,
UML and DoD 2167-A. The students are divided into groups with 5 team members for each. Each
team members is given a role that they have to play in order to complete their project. The role
includes one project manager, one system analyst, one software configuration engineer, one software
quality engineer and two software developers Figure 2. The group is given three weeks to complete
the project. Each team is having a designated space as their office complete with workstations, tools
and stationeries. The team has to adhere to the official working environment standard including attire,
clocking their attendance and applying for leave if necessary.

Figure 2: Team Structure for Final Project

Project Manager plans and oversees the whole development, assign task to the members, keep track
the progress of the project, chaired meetings with the client and review session and manage the team
spirits and synergy. Short meetings are regularly held to update the progress of the development by
each team member and to solve any issues rose during the development. The Project Manager
documents the project plan into Software Development Plan (SDP).

System Analyst gathered and analyzed the requirements for the system. The person carries this duty
is responsible to model and design the structure of the system with the assistance from the
programmers and software quality engineer. The findings and results from analysis and design are
documented in Software Requirement Specification (SRS) and Software Design Document (SDD).

Software Developers are responsible to implement the module according to the design in SDD. The
programmers are responsible to draw the algorithm for the each module, program the algorithm, unit-
test the program, debug and integrate the program. Any major changes to the design will be inform to
the System Analyst before updating the SDD. The programmers must ensure their source codes are
well documented, reviewed and item configured.

Software Configuration Engineer controls all software artefacts produced by the team that includes
SDP, SRS, SDD and source codes using configuration management tool. Artefacts are version
controlled and base lined. Findings from discussions, meetings and reviews are properly documented
and labelled into separate folders in softcopy and hardcopy. Software artefacts, which are labelled as
confidential, are accessible to the team members only and are not for public circulation. Software
Change Request is drawn by this person to manage any request of change for the client.

5072

Software Quality Engineers to document the test plan and test result using Software Test Plan (STP)
and Software Test Result (STR). The person who carries out this role is also responsible to ensure all
software artefacts comply with the standard used in the project.

Based on the activities carried out for each phases and supporting activities as whole in the project,
the team is practicing CMM Level 3.

The team is a dynamic team where the role is interchangeable when it is required. For example,
during implementation all team members put on programmer hat and get their hands into C++ to
complete the program. Through this project and dynamic team structure, the students experience all
phases and supporting activities in software development life cycle. The students found this project
has strengthens their knowledge and enrich their experiences.

3.3 Industrial Training
At the end of each semester, the student will have to complete their industrial training. The students
are assigned to companies that practice software development process. During the industrial training
period, the student will apply and practice the knowledge gained in the class to complete the software
development activities assigned to them by their industrial supervisor. Most of the companies
appreciate the technique or method introduced by the students and continues adopting it into the
company development methodologies.

4 LESSONS’ LEARNT
This section reports on some of the significant lessons learnt while undergoing this curriculum. The
aim is to share the value gained as students with academics and practitioners that are interested in
designing and delivering SE courses at the tertiary level. Two of the authors of this papers were
students at CASE who undergone the process.

While other papers are reporting the lessons learnt from the perspective of knowledge provider or the
Professors [1, 2, 5], this paper is reporting the lessons learnt from the perspective of students who
experienced the teaching and learning process. Based on the curriculum model explained in Section
3, the role play is implemented in the Final Project for each semester.

4.1 Environment
During the Final Project duration, several classrooms and computer labs were set up to imitate the
environment of software development working space. The students’ groups were assigned their
dedicated working space to be utilized in order to deliver the tasks given. The classroom was divided
into several clusters and the computer labs were partitioned to accommodate all the groups. Each
group gets enough basic furniture like tables, chairs and a white board for working space and shared
lounge for informal meeting space. Also, all groups get computers for the purpose of documentation,
development and configuration management. In addition, all groups were responsible to manage their
own resources such as papers, stationeries and document folders.

From the perspective of students, the environment set up was successfully creating the atmosphere of
software development anxiety and belonging to the team. Even though it was not a contest, the
competitiveness among the groups exist to meet the milestones according to the timeline given and to
deliver high quality deliverables. On top of that, the dedicated working spaces given were fully utilized
to protect the intellectual property of project deliverable items and progress thus far.

4.2 Experience and Values
As explained in Section 3, the role of being part of the software development team was assigned to
the students by the lecturers. Therefore, the students need to understand the task of being a project
manager or a system analyst or a quality manager or a developer. Inexperience, students tend to try
hard in order to fulfill the responsibility of the role given. For example, each team was responsible to
protect the confidentiality of some of the documentations. Therefore, the students need to archive,
label and keep all related files accordingly to ensure sufficient action has been taken to protect the
project’s property.

The process and the progress of software development were not always ideal. At this stage, the
students realized that theory discussed in lectures and books were not always the case. Even though

5073

the theory provides guidance, individual students still need to take action according to the current
situation. If a student played a role of a project manager, as an example, the student needs to make
decision in which will give direct impact to the project in hand and the team as a whole. The most
important value obtained from this experience was dealing with variety of people with different
background, competency and the way they think. The element of communication and interpersonal
skills are as important as technical skills to ensure success. In addition, working together as a team is
not easy when it comes to applying software engineering knowledge in order to develop a workable
system. Even harder, the development process must adhere to DoD 2167-A standard.

In accordance to fulfilling DoD 2167-A standard, the versioning was taken care of seriously.
Configuration management handled the development progress and software documentation updates
systematically. Overwhelmed with piles of many versions of software documents produced by system
analysts, model designs produced by designers, letters and request change forms from the customers
and many other related artefacts, forward and reverse traceability were surprisingly at ease. This was
the moment when students appreciate the bureaucracy of software engineering. The same spirit was
brought to the industry during the industrial training period at the end of each semester. Most of the
students put effort to let the industry sees the benefits of official procedure of software engineering.
Software engineering process was meant to ease the software development process and not the other
way round.

4.3 Motivation and Appreciation
The motivation and appreciation of the values gained during the study mould the shape of brand new
practitioners and academics in the field. Graduates from CASE who experienced the process through
role-playing understand the underlying motivation of software engineering good practice. When
knowledge is told or feed to the students, it will be forgotten but when it is experienced and
appreciated, it stays. As practitioners, the possibility of applying software engineering good practice is
huge as they already experienced the benefit of undertaking it. As academics, the experience will
probably influence the improvement of curriculum design and the method of teaching and learning in
other universities.

5 CONCLUSION
Role-playing is found to be an effective approach for the students to learn and grasp the knowledge in
software engineering. Through role-playing the students has found software engineering subject very
interesting. They have the chance to put practical knowledge into practice through the role that was
assigned to them in the project. This experience has enriched them and provides clearer view about
the happenings in software development. Thus, they appreciate the knowledge and experiences and
continually practicing and apply this when they join the software development industry. This approach
is proven through the feedback given by their industrial training supervisors and company supervisors.

REFERENCES
[1] Al-Ani, B. and Yusop N.(2004). Role-playing, Group Work and other Ambitious Teaching

Methods in a Large Requirements Engineering Course. Proceedings of the11th IEEE
International Conference and Workshop on the Engineering of Computer-Based Systems, pp.
299-306.

[2] Henry, T. R. and LaFrance J. (2006). Integrating Role-play into Software Engineering Courses,
Journal of Computer and Small Colleges, Vol 22 (2) pp. 32-38.

[3] Levin, B.B., Hibbard, K., & Rock, T.T. (2002). Using Problem-based Learning as a Tool for
Learning to Teach Students with Special Needs. Teacher Education and Special Education, 25
(3) 278-290.

[4] Reigeluth, C.M. (1999). What is Instructional Design Theory? In C.M. Reigeluth (Ed.)
Instructional design theories and models: A new paradigm of instructional theory (Vol. 2, pp. 5-
29). Manwah, NJ: Lawrence Erlbaum Associates.

[5] Schon, D. A.(1987), Educating the Reflective Practitioner: Toward a New Design for Teaching
and Learning in the Professions, Jossey-Bass Inc., San Francisco, California.

5074

[6] Yusof, K. M., Hassan S. A. H., Jamaludin M., Z., Harun N.F. (2011). Cooperative Problem-
based Learning (CPBL) . In Proceedings of IEEE Global Engineering Education Conference,
Amman, Jordan.

[7] Zowghi D. and Paryani S.(2003). Teaching Requirements Engineering through Role Playing:
Lessons Learnt. Proceedings of the 11th IEEE International Requirements Engineering
Conference, pp. 233-241.

5075

