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ABSTRACT

The increasing number of CCTV cameras in use poses a prob-
lem of information overloading for end users. Smart tech-
nologies are used in video surveillance to automatically ana-
lyze and detect events of interest in real-time, through 2D and
3D video processing techniques called video analytics. This
paper presents a smart surveillance stereo vision system for
real-time intelligent door access monitoring. The system uses
two IP cameras in a stereo configuration and a pan-tilt-zoom
(PTZ) camera, to obtain real-time localised, high quality im-
ages of any triggering events.

Index Terms— stereo vision, image matching, face de-
tection, intelligent system, surveillance

1. INTRODUCTION

Modern video surveillance systems are employed in diverse
scenarios. However, the very high number of CCTV cam-
eras in place poses a problem of information overloading,
since it is very difficult for human operators to monitor tens of
video feeds simultaneously, with the same degree of attention
and effectiveness. Smart technologies are adopted in video
surveillance [1] in order to automatically analyze and detect
events of interest in real-time. The analysis of video feeds
on computers systems through image and video processing
techniques is called video analytics. An example of a typical
indoor video surveillance task is the detection of the face of
people entering a room. When multiple views of the same
scene are available, as in a multi-camera setup, 3D image
processing can be used along with traditional 2D techniques,
to better understand the environment surrounding the CCTV
cameras. Disparity maps allow estimating the 3D structure of
the scene and the geometry of the cameras in space. Many
techniques have been proposed in order to determine the ho-
mologous points of the stereo pair as described in [2].

In this paper a smart surveillance stereo vision system in
the context of a real-time door access monitoring application
is presented. The proposed system can detect and record high
quality face images of people entering a room, with no hu-
man supervision required. Two low resolution IP cameras are
used in a stereo configuration, to obtain the 3D location of the
object of interest, i.e. people’s face, through stereo matching

techniques. This positional information is used to control a
high resolution pan-tilt-zoom (PTZ) camera, which can locate
the object of interest in order to acquire high quality images
of it. Starting from the ideas described in [3] for static object
detection, the work presented in this paper applies a similar
approach to moving targets, in the context of a smart surveil-
lance system for real-time door access monitoring. Moreover,
the proposed system uses a face detection algorithm based on
Support Vector Machine (SVM) classification, and a stereo
matching technique [4–6]. The remainder of the paper is or-
ganized as follows. Section 2 describes the system architec-
ture, while a detailed description of the techniques used in the
system is given in section 3. Section 4 describes the controller
for the PTZ camera. Section 5 contains experimental results
and discussion, and conclusions are provided in section 6.

2. SYSTEM ARCHITECTURE

The system presented in this paper has a centralized archi-
tecture as shown in Figure 1, with all the software running
on a single machine, which can be a general desktop com-
puter. The surveillance sensors used comprise two fixed Are-
cont AV1300 IP cameras of 1.3 megapixels, and a 5 megapix-
els ACTi IP Speed Dome (Cam6510), which is a pan-tilt-
zoom (PTZ) camera capable of 360◦ panning, 180◦ tilting and
zooming, with an angular speed of 400◦ per second. The main
purpose of the system is to detect when a door opens and to
subsequently acquire high resolution images of the face of the
people entering the room. The two IP cameras are set up in
a stereo configuration, with the door in their field of view, so
that they acquire images from two different angles. Such im-
ages can be combined in stereo vision to compute the 3D lo-
cation of the object of interest, which is the face of the people
entering. This information is used to control the PTZ, which
pans and tilts to point at the face location. The communica-
tion with PTZ and IP cameras and the acquisition of the video
streams are entirely carried out over an IP network, ensuring
high topological flexibility to the system layout. The system
software is divided into two main parts namely (i) the video
analytics block and (ii) the PTZ control block. The video ana-
lytics block is implemented in Matlab and contains the image
and video processing techniques that will be described in sec-
tion 3. The PTZ control block is implemented in both C and
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Matlab, and acts as a controller for the PTZ, dealing with its
hardware, firmware and communication protocols. Also the
PTZ controller converts the 3D target location computed by
the video analytics algorithms into commands suitable for the
PTZ.

Fig. 1. System design with two IP cameras and a PTZ camera.

3. VIDEO ANALYTICS TECHNIQUES

The smart video analytics algorithms are implemented in
Matlab and mainly consist of door opening detection, face
detection, block stereo matching and location estimation, as
described in the following sub-sections.

3.1. Door opening detection

The main objective of this sub-block is to detect in each new
frame whether the door is open or closed. Door opening de-
tection is performed only on one of the stereo image frames:
the left image in this case. Since the two IP cameras are fixed,
it is reasonable to select a region of interest (ROI) for the door
in the W ×H image, either manually or automatically [7], as
shown in Figure 2, with y0, y1, x0 and x1 being the verti-
cal and horizontal coordinates of the ROI, where the face of
a person opening the door is expected to be. In this ROI,
the vertical side where the hinges of the door are, is identi-
fied as ‘hinge side’, while the other vertical side is identified
as ‘free side’. In order to detect whether the door is open in
the ith frame, a 2M × M binary mask resembling a Haar
wavelet is overlapped across the free side at the top, in posi-
tion Pref = (x1−M,y0), so that no object can ever occlude
this part of the ROI. In usual video surveillance setups, cam-
eras are mounted from the ceiling or at the very top of side
walls, therefore the line of sight between camera and top edge
of the door is never occluded. The pixel values in the binary
mask are multiplied with the corresponding pixel values in
the ith frame and summed together to obtain the sum Si, i.e.
the binary mask is convolved with the door image, but only at
position Pref . If the binary mask scans the ‘door closed’ and
‘door open’ images horizontally, with its position going from
P1 = (x1 − 3M,y0) to P2 = (x1 + 3M,y0), the graph in
Figure 3 is obtained. It is possible to see that in position Pref

the sum Si can assume two very different values Sopen and
Sclosed, when the door is respectively open and closed. The

only assumption here is that the door, the wall beside it and
the background behind it do not all have the same colour. A
threshold Tdoor can be set as Tdoor = |Sopen−Sclosed|/2. For
the ith frame, Si is computed and if |Si − Sclosed| > Tdoor,
then the door is considered to be open and the face detec-
tion algorithm is run. The door opening detection step is used
in the proposed system, instead of a general motion detector,
because a motion detection technique would trigger also for
people that are already inside the room, and are just passing in
front of the cameras. Instead the proposed door opening de-
tection technique triggers the face detection algorithm if and
only if the door has been opened.

(a) (b)

Fig. 2. Door opening detection: (a) region of interest; (b)
2M ×M binary mask applied to the door image.

Fig. 3. Behaviour of the sum Si in both ‘door open’ and ‘door
closed’ images.

3.2. Face detection

This surveillance system requires a robust face detection al-
gorithm on multi-pose of face. The face entering the door can
have a variety of poses depending on the angle view of camera
and the way a person enters the door. This face detection al-
gorithm comprises a combination between a knowledge based
method and appearance based method in order to develop a
robust system. There are three main stages in this algorithm:
skin colour segmentation and morphological operation, rect-
angle bounding formation and specification, and Support Vec-
tor Machine (SVM) classification. The skin colour segmenta-
tion discriminates between regions that contain the colour of
face skin and regions of non-face skin. The challenges of skin
segmentation in this application are sensitivity to illumination
changing, ethnicity colour skin and the different characteristic
of cameras [8]. The combination of three colour spaces RGB,

100



YCbCr and HSV is applied. The skin region is segmented out
using the following rule:

if (r > 95 ∧ g > 40 ∧ b > 20)
∧ ((max (r, g, b)−min (r, g, b)) > 15)
∧ (|r − g| > 15) ∧ (r > g) ∧ (r > b)
∧ (140 < cb < 195) ∧ (140 < cr < 165)
∧ (0.01 < hue < 0.1)

then (pixel is a skin pixel)

(1)

This rule is based on experiments from three different works
on skin detection and segmentation [9–11], in order to pro-
vide acceptable performance. In [9] the RGB colour space is
used with illumination adaption values; in [11] YCbCr colour
space is applied with modulated range, while in [10] HSV
colour space is employed. In order to obtain an acceptable
segmentation result, morphological operators are used to re-
move noise and to fill small holes in the skin regions. Nor-
mally the small holes in non-skin regions and the noise in
skin regions are due to illumination effects. Bounding rect-
angles are then formed by using a connected components la-
belling operator. The connected component for bounding area
is represented from eight distinct points: leftmost bottom,
leftmost top, rightmost bottom, rightmost top, topmost left,
topmost right, bottommost left and bottommost right. Each
bounding rectangle is then examined in terms of size and pat-
tern shape of the rectangle. The size of rectangle bounding
B(x, y) range must comply to the following rule:{

η < B(x, y) < ϕ, ⇒ B(x, y) retained
otherwise, ⇒ B(x, y) discarded (2)

The smallest rectangle bounding η is defined based on min-
imum pixels that can represent the features of face. In this
algorithm the smallest size η has been chosen as 19 × 19.
For the largest rectangle bounding ϕ, the value is equal to the
image size. Another aspect that needs to be checked on rect-
angle bounding is the pattern shape. The pattern shape of a
rectangle describes the rectangle bounding whether it bounds
a face or a non-face object, and it is measured by the ratio of
width to height of rectangle defined as follows:

0.83 <
width

height
< 1.27 (3)

The limits in (3) have been determined experimentally based
on 98 images that contain 561 faces. After all rectangle
boundings have been checked in terms of size and pattern,
the remaining rectangles are classified whether the rectangle
bounding denotes a face or non-face. SVM classifies the
bounding rectangles based on horizontal projection features.
The horizontal projection of a face has a distinctive pattern
(Figure 4) that is used as features for SVM in training and
classifying operation. Figure 4 shows three different poses
of faces and horizontal projection of eyes, nose and mouth.
Such projection is used as features to differentiate between

face and non-face objects. The human face identified will
be used as the main target object for the stereo matching
algorithm discussed in the next part.

Fig. 4. The profile horizontal projection of face.

3.2.1. Face detection test

The face detection algorithm was tested with the CMU face
colour images database [12] that contains a variety of faces in
normal room lighting condition. 346 face images with a vari-
ety of skin colour tones and different facial poses were used,
as shown in Figure 5. The face detection described in this
paper correctly detected human faces in 327 images (94.5%),
with 19 images (5.5%) erroneously detected. The main cause
of the errors was due to pieces of clothing classified as skin.

Fig. 5. Testing face images with different skin colour tones.

Fig. 6. The disparity map.

3.3. Stereo matching algorithm

The main aim of stereo matching algorithms is to find ho-
mologous points in the stereo pair [13]. In stereo matching,
two images of the same scene are taken from slightly differ-
ent viewpoints using two cameras that are placed in the same
lateral plane. For most pixels in the left image, there is a
corresponding pixel in the right image in the same horizon-
tal line. The disparity is calculated as the distance of these
points when one of the two images is projected onto the other.
The disparity values for all the image points produce a dis-
parity map. A disparity map is typically represented with
a greyscale image, where the closer points are brighter, as
shown in Figure 6. The correspondence pixels can be found
by searching the element in the right image, which is the most
similar (according to a similarity metric) to a given element in
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the left image (a point, region or generic feature). Stereo cor-
respondence is conventionally determined based on matching
windows of pixels, by using similarity metrics such as sum of
absolute differences (SAD), sum of square differences (SSD)
or normalized cross-correlation (NCC) techniques. In this re-
search, the SAD metric is selected for faster execution and
low computation. In order to determine the correspondence
of a pixel in the left image, the SAD values are computed for
all candidate pixels in the right image within the search range.
Assuming the stereo pair is in the same epipolar line, the dis-
parity estimation is performed by using a fixed-size window.
The SAD function is used as a matching cost as follows:

SAD(x, y, d) =
n∑

i,j=−n

D(x, y, i, j, d) (4)

D(x, y, i, j, d) = |IL(x+ i, y + j)− IR(x+ d+ i, y + j)|
(5)

where IL and IR are the grey-level left and right images re-
spectively, with window size of n × n, and d is the disparity.
The best disparity value is determined using the minimum
SAD value. As illustrated in Figure 7 the algorithm firstly
sets one particular fixed value for d for all the points, and the
matching costs are calculated for each image row. Then by
varying d, the cost calculation is repeated until the value of
d has iterated through the complete disparity range. Conse-
quently a two-dimensional matrix containing the SAD values
for each image row is obtained. The width of the matrix is the
same as the length of image row, and the height of the matrix
is the disparity range.

Fig. 7. Matching costs computation based on window size
n× n and disparity range d, with left image as reference and
right as target image.

The matching process is performed in both directions in
order to ensure consistency and accuracy of the disparity map.
At the first stage, the left image is selected as the reference
image and right image as the target. The disparity map for
this matching is referred to as left to right disparity map dLR.
Then a similar process is performed by having the right im-
age as reference and left one as target. In this case, the dis-
parity map is known as right to left disparity map dRL. The
result from both matches is used in the next stage that com-
prises the left-right consistency check. In a stereo pair oc-
clusions can create points that do not belong to any corre-
sponding pixels. In many cases occlusions occur at depth dis-
continuities, where the occlusions on one image correspond

to disparity jumps on the other. In the human visual system
occlusions can help to detect object boundaries. However in
computational stereo processing it is a major source of er-
rors. Left-right consistency check is performed to reduce the
half-occluded pixels in the final disparity map. This can be
performed by taking the computed disparity value in one im-
age and re-projecting it in the other image. If the disparity is
computed following (6) with threshold τ = 1, then the new
disparity map keeps its computed left disparity and defined as
dLRC = dLR(x), otherwise it is marked as occluded [6]. The
value of τ is set to 1 to ensure that there are exact pixel sim-
ilarities between the left-right and right-left disparity depth
maps.

|dLR(x)− dRL(x+ dLR(x))| < τ (6)

The disparity maps are refined by using image filtering
techniques without explicitly enforcing any constraint about
the underlining disparity maps. A common image filtering
operator used is the median filter due to the fact that it pre-
serves edges whilst removing noise [5]. The filtering of the
disparity map can improve the results in weakly textured re-
gions, where the signal to noise ratio is low and often some
pixels are rejected although the disparity can correctly be esti-
mated in the neighbourhood. Figure 8(a) shows the disparity
depth map without the filtering process. As indicated in Fig-
ure 8(b) the depth map after the filtering process significantly
reduces the noise while smoothen out the depth map. The
next section explains how to estimate the 3D location from
the disparity depth map.

(a) (b)

Fig. 8. Disparity refinement with image filtering: (a) original
disparity depth map; (b) disparity depth map after filtering.

3.4. 3D location estimation

Basic geometry is used in order to calculate the 3D location
or the range field of the scene. The projection of a 3D phys-
ical point on the two image planes requires finding the exact
location of the object. The simplest geometry of a stereo sys-
tem is formed by two parallel cameras with horizontal dis-
placement as shown in Figure 9. The stereo configuration
is derived from the pinhole camera model [13]. The dispar-
ity can be determined by finding the difference between the
X-coordinates of two correspondence points. Referring to
Figure 9, OL = (UL, VL) is the reference camera (left cam-
era) centre point, while OR = (UR, VR) is the target camera
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Fig. 9. Stereo camera configuration.

centre point. The implementation of this system is based on
parallel cameras, which are shifted along the same horizon-
tal line or X-coordinate, known as the epipolar line, where
VL = VR. The symbol f is the focal length of cameras’ lens
(the distance from camera centre point to the image plane)
and B is the baseline distance (distance between two optical
centers, OL and OR). The disparity of the stereo images is
obtained as difference between the two corresponding points,
UL and UR:

d = UL − UR =
(
f
x

z

)
−
(
f
x−B
z

)
(7)

The location of correct projections of the same point P on
the two image planes can determine the exact depth of P in
the real world. From (7), the depth z is defined as

z = (Bf)/d (8)

From (8), the equations used to calculate the exact 3D
location of P = (x, y, z) with respect to the stereo cameras
are:

x =
Bx1
d
, y =

By1
d
, z =

Bf

d
(9)

The next section describes the PTZ controller, which uses
the information obtained from the stereo matching and 3D
location estimation algorithms.

3.4.1. Location estimation test

For the location estimation test, the system is fed with the 22
stereo images, to evaluate the accuracy of the target location
estimated by the proposed system (pestimate), with respect to
the exact target location (pexact) in the 3D space. The error
between each set of estimated and exact locations is computed
e = |pexact − pestimate|. Table 1 shows means (µ) and stan-
dard deviations (σ) of the absolute differences between exact
and estimated values, for each coordinate axis. The error in
X and Y coordinates are very small, while the error in Z co-
ordinate is slightly higher.

4. PTZ CONTROLLER

The PTZ controller module deals with the PTZ hardware,
firmware and communication protocols. First, it applies a
homogeneous transformation to compute the 3D location
PPTZ = (xPTZ , yPTZ , zPTZ) of the target, with respect to

Table 1. Mean and standard deviation of absolute differences.

AXES X Y Z

µ 0.047 m 0.099 m 0.357 m
σ 0.027 m 0.011 m 0.077 m

the PTZ. If T is a transformation matrix that transforms from
the stereo cameras coordinate frame to the PTZ coordinate
frame, the location PPTZ is computed as:

[xPTZ , yPTZ , zPTZ , 1]
T
= T [x, y, z, 1]

T (10)

The PTZ controller converts the target location PPTZ into
pan and tilt angles, and zoom factor for the PTZ. These val-
ues are incorporated into commands for the PTZ, in the form
of standard HTTP requests, over the network. The panning
angle θ and the tilting angle β are calculated as:

θ = tan−1

(
zPTZ

L− xPTZ

)
(11)

β = tan−1

 yPTZ√
(L− xPTZ)

2
+ z2PTZ

 (12)

where L is the distance between IP cameras and PTZ along
the X-axes. The zoom ratio instead is proportional to the
Euclidean distance between PTZ camera and target object.

5. EXPERIMENTAL RESULTS

The system has been tested using different test vectors, i.e. by
placing the cameras at different locations with respect to the
PTZ and different people as targets. The two fixed IP cameras
face directly towards the door that is to be monitored. Images
of 640×480 pixels are acquired. The PTZ camera is placed in
a different position with respect to the IP cameras, and their
relative position is known. During the system setup, the IP
cameras need to be calibrated to ensure the images captured
are in the same epipolar line. This stage is quite important
to ensure accurate distance and depth estimation of the tar-
get location. Figure 10 shows a typical image result captured
by the presented system. Both left and right detected faces
are in the same epipolar line. The searching area for face
detection in the left image is minimized to the region of in-
terest, as described in section 3.1. The searching area for the
stereo matching algorithm in the right image is limited to a
small neighbourhood around the face position in the left im-
age. With this approach, the execution of stereo matching and
face detection is ensured to be computationally efficient. The
face detection result is processed in the stereo matching and
location estimation blocks, to obtain depth and position of the
detected object. With this information, the coordinates of the
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object are calculated and transmitted to PTZ controller. The
coordinates are converted into pan and tilt angles, and zoom-
ing factor. The PTZ camera points at the target object and a
high resolution image is acquired, as shown in Figure 10(c).

(a) (b) (c)

Fig. 10. Images acquired after face detection and location
estimation: (a) left camera view; (b) right camera view; (c)
target object image captured by the PTZ.

5.1. Execution time

The mean and standard deviation profile of the recorded exe-
cution times are presented in Table 2. The results show that
face detection, stereo matching and location estimation steps
accounts for less than 50% of the total execution time. The
high image acquisition time is due to the transmission of both
left and right images over the network, from the IP cameras.
The average frame rate is about 8 fps, for the system which
is currently implemented in Matlab. It is expected that a ded-
icated DSP board would significantly speed up the total exe-
cution time.

Table 2. Average execution times, in seconds.
µ σ

ACQUISITION 0.090 s 0.004 s
FACE DETECTION 0.032 s 0.002 s

STEREO MATCHING 0.028 s 0.001 s
LOCATION ESTIMATION 0.001 s 0.000 s

TOTAL 0.133 s 0.007 s

6. CONCLUSION

A fully automated smart surveillance system using stereo im-
ages has been designed and developed. It can automatically
detect and zoom in on objects of interest, using image pro-
cessing techniques. The system processes two stereo images
acquired from fixed IP cameras, to calculate the 3D location
of the face of people entering the room. This information is
used to control a high resolution PTZ camera. The features
of this system include door access detection, face detection
and high quality images acquisition using the PTZ camera.
The system is robust and reliable, and it can be easily inte-
grated with other smart surveillance systems. As future work
we plan to implement the described smart video analytics al-
gorithms on a multimedia DSP board, for fast ‘in-camera’ ex-
ecution.
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