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Abstract 

In wireless communications, one of the main 
problems that deteriorate the accuracy of 
location and positioning (L&P) estimation is 
non line of sight (NLOS) propagation. With 
the advances of multiple input multiple output 
(MIMO) technology as one of the features of 
International Mobile Telecommunications-
Advanced (IMT-Advanced) systems, it has 
become feasible to adopt the technology into 
the mobile location scenario. By exploiting the 
multipath characteristics of the MIMO system, 
it is possible to estimate the position of mobile 
stations (MS) by considering the capability 
of MIMO to mitigate the effects of non line 
of sight (NLOS) conditions. In this paper we 
developed geometric approach by utilizing the 
advantages of MIMO system and employ the 
time of arrival (TOA) as range measurements 
for improving location estimation in various 
NLOS environments. The performance of 
the proposed method has been evaluated 
through computer simulation. The results of 
our simulation demonstrate the advantages 
of the proposed algorithm in comparison with 
the conventional LLS algorithm meeting the 
Federal Communications Commission (FCC) 
requirements.

Keywords: Location and Positioning (L&P), 
multiple input multiple output (MIMO), time 
of arrival (TOA), non-line of sight (NLOS) 

I. INTRODUCTION

In recent years, location detection and 
positioning in wireless technology have 
attracted huge interest of researchers and 
contribute a major benefit to both the 
society and the industry. By knowing a 
user’s position, various applications such 
as tracking, location sensitive billing, 
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public safety and enhanced emergency 
services, intelligent transportation 
systems (ITS), and etc [1] can be made 
possible. Due to high demand on 
unlimited services and applications, 
wireless broadband communications 
are becoming more popular since the 
users are provided with “anywhere 
and at any time” kind of service. With 
the emergence of International Mobile 
Telecommunications-Advanced (IMT-
Advanced), the technology is able to 
fulfill the most important features of 
the next generation wireless systems.  
Indeed, IMT-Advanced have some 
unique features that can be employed for 
enhancing the positioning accuracy [2, 3] 
especially MIMO which can be applied 
for improving mobile location estimation 
accuracy.

Fundamentally, the MS position can be 
determined using various parameters 
such as signal strength (SS), angle of 
arrival (AOA), time of arrival (TOA), 
time difference of arrival (TDOA), hybrid 
methods, and etc [1, 4, 5]. The accuracy 
of mobile location schemes depends on 
the propagation conditions of wireless 
channels. If the line of sight (LOS) 
propagation exists between the MS and 
the all base stations (BSs), high location 
estimation accuracy can be achieved. 
Practically, however, due to multipath 
and NLOS problems of the wireless 
environments, precise estimation of 
these parameters at multiple BSs imposes 
greater challenges, which result in poor 
accuracy in the estimation of MS location, 
no matter which method is employed. 
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Therefore, positioning with an NLOS 
can causes considerable degradation of 
mobile location accuracy.  

This problem was addressed in many 
location algorithms that concentrate 
on identifying and mitigating the 
NLOS errors. The algorithm proposed 
in [6] uses signal measurements at a 
set of participating BSs and weighting 
techniques to mitigate NLOS effects. 
But if the propagations at all BSs are 
NLOS, this algorithm cannot improve the 
location accuracy. A new linear lines of 
position method (LLOP) presented in [7] 
has made the estimation of the unknown 
MS location easier  than traditional 
geometrical approach of calculating 
the intersection of the circular lines of 
position (CLOP) [8]. LLOP algorithm 
can mitigate the NLOS error as well as 
the measurement noise. However, all the 
papers described above only consider 
the SISO antenna mode configuration. 
On the other hand, only a single of TOA 
measurement is considered between 
the BS and MS. With the advances in 
radio miniaturization and integration of 
MIMO technology; recently it has become 
feasible to adopt the technology into the 
mobile location scenario [9]. By exploiting 
the multipath characteristics of the 
MIMO system, it is possible to determine 
the position of MS by considering the 
capability of MIMO to mitigate the NLOS 
conditions.

Basically, there are two approaches that 
can be used in computing the estimation 
of a location, namely statistical and 
geometrical approach.  In this paper, 
we adopt the second approach by using 
parameter measurements of TOA for 
MIMO system by adopting the technique 
proposed in [7]. This method is based 
on the inherent geometrical relationship 
between the BS locations and the TOA 
measurements. The traditional geometric 
approach in determining the position of 
an MS by solving the intersection of the 
CLOP. When NLOS errors are introduced 
into the TOA measurements, the CLOP 
will not intersect at a point. This has lead to 

more statistically justifiable methods such 
as linear least squares (LLS)  [8, 10]. When 
approaching location estimation through 
the geometric point of view, solving this 
set of equations is inconvenient task 
which can be made simpler through a 
different interpretation of the location 
geometry. Therefore, instead of using 
CLOP for TOA-based location, a new 
geometry approach based on the LLOP 
method can be introduced along with the 
MIMO system in which it is capable to 
reduce the NLOS errors, namely multiple 
linear line of position (MLOP).

The remainder of this paper is organized as 
follows. In Section II, we briefly explained 
literature review including modeling the 
NLOS error, linear least square estimation 
and linear lines of position algorithm. 
In Section III, we present the system 
models used to perform the simulation 
results. The new geometrical algorithm 
based on MLOP for MIMO system at 
three BSs has been proposed in Section 
IV. Section V discusses the performance 
of the proposed algorithm evaluated 
via computer simulations. Finally, our 
concluding remarks are given in section 
VI.

II. LITeRATURe RevIeW

A. Modeling the NLOs error

Basically, the time of arrival (TOA) data 
fusion methods is based on combining 
of the TOA of the MS signal when 
arriving at three BSs. Therefore, the 
TOA measurement can be used to 
calculate the range between BS and 
MS. Since the wireless signals travel at 
the constant speed of light, so that the 
distance of between BS and MS is directly 
proportional to the TOA measurement 
which is based on LOS measurement with 
the absence of any source of errors, and 
given as
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arriving at three BSs. Therefore, the TOA measurement can be 
used to calculate the range between BS and MS. Since the 
wireless signals travel at the constant speed of light, so that the 
distance of between BS and MS is directly proportional to the 
TOA measurement which is based on LOS measurement with 
the absence of any source of errors, and given as 

i TOA cr = Δ × (1) 

where  is a distance between the BS and MS, 
where  represents the TOA associated to the BSi,
represents the reference time of transmission of the BS 
signals.  

However, the TOA measurement is corrupted by the noise 
and possible NLOS effects. Therefore, the range measurement 
between BS and MS for MIMO configurations,   can be 
modeled as 
 

( ) ( ) ( ) ( )i i i i i i i it r t n t NLOS tδ = + + (2) 

where  is the true distance between BSi and MS, 
represents the Gaussian measurement noise and 
denotes the NLOS error range at time sample .

where M is number of available BS. 

We can express the estimated range measurements 
corresponding to coordinates of BS and MS as following: 

( ) ( )2 2
,i n i e i ex x y yδ = − + − (3) 

where and  are the coordinates of ith BS and 
the estimated MS’s position, respectively. The true distance, 

  between the MS and the ith BS can be represented as 

( ) ( )2 2
u ui i ir x x y y= − + − (4) 

where indicates the true position of MS. 
Generally,  can assumed different values 

depending on the relative positions of the MS, BSs and 
scatterers or obstacles along the transmission path. In addition, 
because the NLOS error is positive, the measured range is 
greater than true range and it is assumed that the measurement 
noise is a zero mean Gaussian random distribution with 
relatively small standard deviation and is negligible as 
compared to NLOS error. 

The statistics of the random variable, , therefore, 
can be expected to depend on parameters such as the 
environment and network topology. The fact that the NLOS 
error is location-dependent makes it extremely difficult to 
justify the use of any particular probability distribution 
function. Based on the measurements provided in [11], a 
clipped Gaussian distribution was used in the simulation work 
in  [12] to model NLOS range errors to evaluate the 
performance of conventional location algorithms in NLOS. 
However the mean and variance for  observed in 
[11] reflect the conditions in that particular measurement 
environment only. In the absence of real world results, it 
becomes necessary to assume simplified models for the 
purpose of simulations.  For purpose of illustration, only 
macrocellular models with uniform scatterer distributions are 
considered such as uniform distribution model, ring of 
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because the NLOS error is positive, the measured range is 
greater than true range and it is assumed that the measurement 
noise is a zero mean Gaussian random distribution with 
relatively small standard deviation and is negligible as 
compared to NLOS error. 

The statistics of the random variable, , therefore, 
can be expected to depend on parameters such as the 
environment and network topology. The fact that the NLOS 
error is location-dependent makes it extremely difficult to 
justify the use of any particular probability distribution 
function. Based on the measurements provided in [11], a 
clipped Gaussian distribution was used in the simulation work 
in  [12] to model NLOS range errors to evaluate the 
performance of conventional location algorithms in NLOS. 
However the mean and variance for  observed in 
[11] reflect the conditions in that particular measurement 
environment only. In the absence of real world results, it 
becomes necessary to assume simplified models for the 
purpose of simulations.  For purpose of illustration, only 
macrocellular models with uniform scatterer distributions are 
considered such as uniform distribution model, ring of 
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greater than true range and it is assumed that the measurement 
noise is a zero mean Gaussian random distribution with 
relatively small standard deviation and is negligible as 
compared to NLOS error. 
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error is location-dependent makes it extremely difficult to 
justify the use of any particular probability distribution 
function. Based on the measurements provided in [11], a 
clipped Gaussian distribution was used in the simulation work 
in  [12] to model NLOS range errors to evaluate the 
performance of conventional location algorithms in NLOS. 
However the mean and variance for  observed in 
[11] reflect the conditions in that particular measurement 
environment only. In the absence of real world results, it 
becomes necessary to assume simplified models for the 
purpose of simulations.  For purpose of illustration, only 
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The CDSM model is a higher likelihood 
for LOS conditions or range close to zero 
than higher NLOS error values. In the 
other words, the CDSM model is used for 
situations that both LOS and NLOS exist, 
but the LOS is more considerable than 
NLOS. In contrast, for opposite situations, 
we consider the RCDSM distribution 
that emphasize on NLOS compared to 
LOS. Next the third model of NLOS 
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error namely ROS model consists of high 
probability of large NLOS error and of 
near-zero NLOS error. Finally, the fourth 
model of NLOS error was modeled as 
uniformly distribution random variable 
which gives equal probability of taking 
low and high NLOS values. 

B. Linear Least squares estimation

Linear least squares (LLS) [7, 15] approach 
is a suboptimal positioning technique 
which provides a solution with low 
computational complexity. Therefore, 
it can be employed for applications 
that require fast and low complexity 
implementation with reasonable 
positioning accuracy. In addition, for 
applications that require precise location 
estimation, LLS can be used to obtain 
initial position estimate for initializing 
high-accuracy positioning algorithms, 
such as non linear least squares (NLLS) 
[15] and linearization based on Taylor 
series [8].  A good initialization can 
significantly decrease the computational 
complexity and the final location error 
of a high accuracy technique. Therefore, 
performance analysis of the LLS is 
important from multiple perspectives. In 
this paper, LLS is utilized for performance 
comparison with the developed 
algorithm. 

The LLS approach begins with the set 
of equations (4) where each distance 
measurement is assumed to define a circle 
of uncertain region. Based on trilateration 
method with distance measurements of 
at least three available BS, the intersection 
at one point can be obtained by using 
LLS approach. These equations can be 
simplified by solving intersections off 
circles and presenting in the matrix form 
as following [15] and explained in Fig. 2. 

scatterer (ROS), circular disk of scatterer model (CDSM) and 
reverse circular disk scatterer model (RCDSM) [13, 14]. The 
models are illustrated in Fig. 1.  

The CDSM model is a higher likelihood for LOS conditions 
or range close to zero than higher NLOS error values. In the 
other words, the CDSM model is used for situations that both 
LOS and NLOS exist, but the LOS is more considerable than 
NLOS. In contrast, for opposite situations, we consider the 
RCDSM distribution that emphasize on NLOS compared to 
LOS. Next the third model of NLOS error namely ROS model 
consists of high probability of large NLOS error and of near-
zero NLOS error. Finally, the fourth model of NLOS error 
was modeled as uniformly distribution random variable which 
gives equal probability of taking low and high NLOS values.  

B. Linear Least Squares Estimation 
Linear least squares (LLS) [7, 15] approach is a suboptimal 

positioning technique which provides a solution with low 
computational complexity. Therefore, it can be employed for 
applications that require fast and low complexity 
implementation with reasonable positioning accuracy. In 
addition, for applications that require precise location 
estimation, LLS can be used to obtain initial position estimate 
for initializing high-accuracy positioning algorithms, such as 
non linear least squares (NLLS) [15] and linearization based 
on Taylor series [8].  A good initialization can significantly 
decrease the computational complexity and the final location 
error of a high accuracy technique. Therefore, performance 
analysis of the LLS is important from multiple perspectives. In 
this paper, LLS is utilized for performance comparison with 
the developed algorithm.  

The LLS approach begins with the set of equations (4) 
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where  and n denotes the number of available 
BSs. dij represents the distance between BSi and BSj and
is the serving BS. 
From (5), the LLS solution can be obtained as [15, 16]  
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where is the 2-D desired vector of MS coordinates and 
position of serving BS, denoted by . 

C. Linear Lines of Position Algorithm 
It has been mentioned in Section I, there are two 

approaches that can be used for obtaining the location of a MS 
given measurements of SS, AOAs, TOAs or TDOAs. The 
straightforward approach is to use a geometric interpretation 
of the measurements and compute the intersections of the 
lines. A LLOP method is presented [7] which makes it easier 
estimating the unknown MS location than the other 
approaches calculating the intersection of the CLOP. In the 
LLOP method straight lines of position, rather than CLOP is 
used to estimate the location of MS as shown in Fig. 3 where 
the dotted straight lines are linear lines of position and the 
three circles are circular lines of position. However, the paper 
only considers SISO antenna mode configuration where only 
one TOA measurement is taken into consideration from each 
BS, whereas we focus on MIMO antenna mode configurations 
where more TOA signals can be employed to estimate the 
location of MS as shown in Fig. 6. We consider the numbers 
of circles developed for each BS is proportional with the 
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was modeled as uniformly distribution random variable which 
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where  is the 2-D desired vector of MS 
coordinates and position of serving BS, 
denoted by X= [xi,yi]T.

C. Linear Lines of Position Algorithm

It has been mentioned in Section I, there 
are two approaches that can be used 
for obtaining the location of a MS given 
measurements of SS, AOAs, TOAs or 
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TDOAs. The straightforward approach 
is to use a geometric interpretation of 
the measurements and compute the 
intersections of the lines. A LLOP method 
is presented [7] which makes it easier 
estimating the unknown MS location 
than the other approaches calculating 
the intersection of the CLOP. In the 
LLOP method straight lines of position, 
rather than CLOP is used to estimate 
the location of MS as shown in Fig. 3 
where the dotted straight lines are linear 
lines of position and the three circles 
are circular lines of position. However, 
the paper only considers SISO antenna 
mode configuration where only one TOA 
measurement is taken into consideration 
from each BS, whereas we focus on MIMO 
antenna mode configurations where 
more TOA signals can be employed to 
estimate the location of MS as shown in 
Fig. 6. We consider the numbers of circles 
developed for each BS is proportional 
with the multiplication of number of 
transmitter antenna, Nt and number of 
receiver antenna, Nr.  Fig. 6 illustrates 
an example of geometry of TOA based 
location for MIMO 2x1 when three BSs 
are involved and it can be extended for 
others MIMO antenna configurations. In 
the Section IV, geometric solutions for 
the location problem are developed for 
MIMO2x1 antenna mode configuration. 
To simplify the mathematics, only 
location in two dimensions is considered 
and we assume that all available BSs have 
the same antenna mode configurations.

multiplication of number of transmitter antenna, Nt and
number of receiver antenna, Nr.  Fig. 6 illustrates an example 
of geometry of TOA based location for MIMO 2x1 when three 
BSs are involved and it can be extended for others MIMO 
antenna configurations. In the Section IV, geometric solutions 
for the location problem are developed for MIMO2x1 antenna 
mode configuration. To simplify the mathematics, only 
location in two dimensions is considered and we assume that 
all available BSs have the same antenna mode configurations. 

III. IMT-ADVANCED SYSTEM MODEL

The IMT-Advanced model used is according to the 
IEEE802.16e standard, which is based on cellular system [17]. 
In this scenario, the model consists of minimum three 
synchronized WiMAX BS and a MS with capability of MIMO 
antenna mode as depicted in Fig. 4. 

We consider the MIMO antenna is diversity antenna, so that 
only TOA measurements are taken into account. In the 
WiMAX downlink, there is a preamble which consist of a 
known OFDM(A) symbol that can be used to attain initial 
synchronization between the BSs and the MS [17]. Therefore, 
under the assumption that transmitter and receiver are 
perfectly synchronized, the MS is able to identify the TOA 
signals from each MIMO antenna based on detection of 
downlink preamble signals that are transmitted by each 
WiMAX MIMO BS as shown in Fig. 5 which was obtained as 
a result of IMT-Advanced simulation.  

Furthermore, in MIMO-OFDM(A), the received signal at 
each antenna is a superposition of the signals transmitted from 
the Nt transmit antennas. Thus, the preambles for each 

transmit antenna need to be transmitted without interfering 
with each other. It is assumed that noise processes at different 
receiver MIMO antennae are independent and that there is 
sufficient separation between all antenna pairs so that different 
channel coefficients can be observed at different antennas.  

In addition of preamble signal used in determination of 
TOA, the location of WiMAX BSs must be known a priori. In 
[17], WiMAX BSs broadcast periodically their location-based 
services (LBS) information to MSs via the LBS_ADV 
message. The LBS_ADV message shall include the BS’s 
coordinate. In addition it is assumed that, at any time the MS 
can receive forward-link pilot (preamble) signals from 
particular MIMO antennae of its home BS and at least two 
neighboring BS. Upon receiving the location service request, 
the MS position can be calculated by using the proposed 
algorithm as explained in Section IV. 

.

IV. PROPOSED GEOMETRICAL APPROACH OF NEW MULTIPLE 
LINES OF POSITION (MLOP) FOR MIMO SYSTEM

Let us assume that the measurement noise is a zero mean 
AWGN, which is negligible in comparison with NLOS noise. 
Furthermore, we assume that the NLOS error distribution is 
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III. IMT-ADvANCeD sysTeM 
MODeL

The IMT-Advanced model used is 
according to the IEEE802.16e standard, 
which is based on cellular system [17]. 
In this scenario, the model consists of 
minimum three synchronized WiMAX 
BS and a MS with capability of MIMO 
antenna mode as depicted in Fig. 4.

We consider the MIMO antenna is 
diversity antenna, so that only TOA 
measurements are taken into account. In 
the WiMAX downlink, there is a preamble 
which consist of a known OFDM(A) 
symbol that can be used to attain initial 
synchronization between the BSs and the 
MS [17]. Therefore, under the assumption 
that transmitter and receiver are perfectly 
synchronized, the MS is able to identify 
the TOA signals from each MIMO 
antenna based on detection of downlink 
preamble signals that are transmitted by 
each WiMAX MIMO BS as shown in Fig. 
5 which was obtained as a result of IMT-
Advanced simulation. 

Furthermore, in MIMO-OFDM(A), the 
received signal at each antenna is a 
superposition of the signals transmitted 
from the Nt transmit antennas. Thus, the 
preambles for each transmit antenna need 
to be transmitted without interfering 
with each other. It is assumed that noise 
processes at different receiver MIMO 
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antennae are independent and that 
there is sufficient separation between all 
antenna pairs so that different channel 
coefficients can be observed at different 
antennas.
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number of receiver antenna, Nr.  Fig. 6 illustrates an example 
of geometry of TOA based location for MIMO 2x1 when three 
BSs are involved and it can be extended for others MIMO 
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mode configuration. To simplify the mathematics, only 
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the MS position can be calculated by using the proposed 
algorithm as explained in Section IV. 
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In addition of preamble signal used in 
determination of TOA, the location of 
WiMAX BSs must be known a priori. In 
[17], WiMAX BSs broadcast periodically 
their location-based services (LBS) 
information to MSs via the LBS_ADV 
message. The LBS_ADV message shall 
include the BS’s coordinate. In addition it 
is assumed that, at any time the MS can 
receive forward-link pilot (preamble) 
signals from particular MIMO antennae of 
its home BS and at least two neighboring 
BS. Upon receiving the location service 
request, the MS position can be calculated 
by using the proposed algorithm as 
explained in Section IV.

Iv. PROPOseD geOMeTRICAL 
APPROACh Of NeW 
MULTIPLe LINes Of 
POsITION (MLOP) fOR 
MIMO sysTeM

Let us assume that the measurement 
noise is a zero mean AWGN, which is 
negligible in comparison with NLOS 
noise. Furthermore, we assume that the 
NLOS error distribution is positive. In 
this case the measured range will be 
greater than true range. Recall that in 
conventional trilateration method, using 
at least three BSs to resolve ambiguities, 
the MS position for MIMO antenna mode 
configurations is given by the intersection 

of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored). 

The approach presented here for 
calculating the intersection of the 
multiple circles is shown in Fig 6, where 
the dotted lined straight lines represent 
the LLOP and the circles are CLOP. Fig. 
7 on the other hand shows the enlarged 
view of multiple LLOP that provide the 
possible few estimations of MS location 
from the intersection of the straight lines. 
According to Fig. 6, each pair of circles 
can intersect with at most two points 
which can be used to define a straight 
line. For instance, in the case of MIMO 
2x1 there are four straight lines have been 
projected. The intersection of these lines 
provides the possible estimation of the 
MS location. Therefore, the lines define 
new lines of position namely multiple 
linear lines of position (MLOP). In order 
to determine the equations for the new 
MLOPs, we begin with the original CLOP 
equations as given in (4) for i = j,2,…,N, 
where N is the number of BS. Consider 
BSj as the serving cell and j = 1. The new 
line which passes through the intersection 
of the two circular of LOPs for those 
two BSs can be found by squaring and 
differentiating the ranges in (4). More 
specifically, firstly, we calculate the range 
of each TOA signal from the serving cell, 
BS1.
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antenna at transmitter and Nr is number of antenna at receiver. 
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estimated MS’s position, respectively. Please note that the 
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Next by squaring and differentiating between BSs and 
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If there are more than three BSs involved, MLOP can be 
determined as same procedure as the above equation where for 
BS1 and BSi for every n;
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Therefore, generally the above equations can be extended to i
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We could then find the position of MS by solving the new 
MLOP for each TOA signal among all BSs with BS1 as 
serving cell (reference BS). From (11), it can be simplified to 
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for j = 1 and n = 1,2,,...Nt x Nr where Nt 
is number of antenna at transmitter and 
Nr is number of antenna at receiver. (xj,yj                           
) and (xe,ye)     denote the coordinates of 
serving BS and estimated MS’s position, 
respectively. Please note that the antenna 
spacing is negligible.
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positive. In this case the measured range will be greater than 
true range. Recall that in conventional trilateration method, 
using at least three BSs to resolve ambiguities, the MS 
position for MIMO antenna mode configurations is given by 
the intersection of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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for  and  where Nt is number of 
antenna at transmitter and Nr is number of antenna at receiver. 
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A similar MLOP can be generated for BS1 
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true range. Recall that in conventional trilateration method, 
using at least three BSs to resolve ambiguities, the MS 
position for MIMO antenna mode configurations is given by 
the intersection of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
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squaring and differentiating the ranges in (4). More 
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using at least three BSs to resolve ambiguities, the MS 
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CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
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where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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positive. In this case the measured range will be greater than 
true range. Recall that in conventional trilateration method, 
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position for MIMO antenna mode configurations is given by 
the intersection of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
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positive. In this case the measured range will be greater than 
true range. Recall that in conventional trilateration method, 
using at least three BSs to resolve ambiguities, the MS 
position for MIMO antenna mode configurations is given by 
the intersection of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.

( ) ( )2 2
,j n j e j er x x y y= − + −  (10) 

for  and  where Nt is number of 
antenna at transmitter and Nr is number of antenna at receiver. 
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Next by squaring and differentiating between BSs and 

serving BS, BS1, the new line i.e straight line method can be 
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If there are more than three BSs involved, MLOP can be 
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We could then find the position of MS by solving the new 
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lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
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most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
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provides the possible estimation of the MS location. 
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determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
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using at least three BSs to resolve ambiguities, the MS 
position for MIMO antenna mode configurations is given by 
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dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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lined straight lines represent the LLOP and the circles are 
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multiple LLOP that provide the possible few estimations of 
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most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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If there are more than three BSs involved, MLOP can be 
determined as same procedure as the above equation where for 
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most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
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provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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The same procedure is then applied to the 
equation (5) gives

positive. In this case the measured range will be greater than 
true range. Recall that in conventional trilateration method, 
using at least three BSs to resolve ambiguities, the MS 
position for MIMO antenna mode configurations is given by 
the intersection of circles as illustrated in Fig. 6 (with the 
dotted straight lines were ignored).  

The approach presented here for calculating the intersection 
of the multiple circles is shown in Fig 6, where the dotted 
lined straight lines represent the LLOP and the circles are 
CLOP. Fig. 7 on the other hand shows the enlarged view of 
multiple LLOP that provide the possible few estimations of 
MS location from the intersection of the straight lines. 
According to Fig. 6, each pair of circles can intersect with at 
most two points which can be used to define a straight line. 
For instance, in the case of MIMO 2x1 there are four straight 
lines have been projected. The intersection of these lines 
provides the possible estimation of the MS location. 
Therefore, the lines define new lines of position namely 
multiple linear lines of position (MLOP). In order to 
determine the equations for the new MLOPs, we begin with 
the original CLOP equations as given in (4) for i = j,2,…,N,
where N is the number of BS. Consider BSj as the serving cell 
and j = 1. The new line which passes through the intersection 
of the two circular of LOPs for those two BSs can be found by 
squaring and differentiating the ranges in (4). More 
specifically, firstly, we calculate the range of each TOA signal 
from the serving cell, BS1.
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By substituting (15) into (16); and solving 
for x-coordinate of xe , we get

By substituting (15) into (16); and solving for x-coordinate of 
xe , we get 
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This can be generalised for any BS i in finding x-coordinate of 
xe results 
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=  (18) 

Following the same procedure for any BS i in finding y 
coordinate of ye is 
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for 1, 2, 1i N= … −

Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
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do not all intersect at a single point. In the case of MIMO, we 
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of the BSs.  
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measurements, , an estimate of the MS’s location can 
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consider all measured TOA signals in determining the position 
of the BSs.  
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shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
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Following the same procedure for any BS i in finding y 
coordinate of ye is 
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Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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where
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xe , we get 

( ) ( )
( )( ) ( )( )

1 1 2 1 1 3

1 3 1 2 1 2 1 3
e

B y y A y y
x

x x y y x x y y
− − −

=
− − − − −

 (17) 

This can be generalised for any BS i in finding x-coordinate of 
xe results 

( ) ( )1 1 ( 1)i i i i
e

i

B y y A y y
x

C
+− − −

=  (18) 

Following the same procedure for any BS i in finding y 
coordinate of ye is 

( ) ( )1 ( 1) 1i i i i
e

i

A x x B x x
y

C
+− − −

=  (19) 

where
222 2

, 1, 1
1
2i i n n iA r r BS BS⎡ ⎤= − + −⎢ ⎥⎣ ⎦

( )
222 2

1, 1 ( 1)1 ,
1
2i n ii nB r r BS BS ++
⎡ ⎤= − + −⎢ ⎥⎣ ⎦

( )( ) ( )( )1 ( 1) 1 1 1 ( 1)i i i i iC x x y y x x y y+ += − − − − −

for 1, 2, 1i N= … −

Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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obtained using (18) and (19). Also, note 
that this method can be used when there 
are measurement errors and the circles do 
not all intersect at a single point. In the 
case of MIMO, we consider all measured 
TOA signals in determining the position 
of the BSs. 

It can be observed that the number of 
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as compare to the CLOP (such as LLS 
algorithm) meaning that the developed 
MLOP algorithms may yield various 
intersection points instead of a single 
common point. Fig. 8 shows the location 
estimation distribution using LLS 
algorithm and MLOP algorithm for 
antenna mode of MIMO4x2 with 1000 
number of samples. As can be seen in Fig. 
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distributed where possible numbers of 
MS positions are same with number of 
samples i.e 1000 locations. On the other 
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shape is formed from the total number of 
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the increasing numbers of possibilities of 
MS location produce the better optimal 
location estimation by averaging all 
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increasing number of intersection points 
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finally can reduce the location estimation 
accuracy, especially in the case on moving 
MS. Therefore, determination of optimal 
intersection points which will produce 
the same results in term of location 

accuracy with lower processing time 
must be investigated. 
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xe , we get 

( ) ( )
( )( ) ( )( )

1 1 2 1 1 3

1 3 1 2 1 2 1 3
e

B y y A y y
x

x x y y x x y y
− − −

=
− − − − −

 (17) 

This can be generalised for any BS i in finding x-coordinate of 
xe results 
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Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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By substituting (15) into (16); and solving for x-coordinate of 
xe , we get 
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This can be generalised for any BS i in finding x-coordinate of 
xe results 
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Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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By substituting (15) into (16); and solving for x-coordinate of 
xe , we get 
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This can be generalised for any BS i in finding x-coordinate of 
xe results 

( ) ( )1 1 ( 1)i i i i
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Following the same procedure for any BS i in finding y 
coordinate of ye is 
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where
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Thus, given the positions of the BSs and the range 
measurements, , an estimate of the MS’s location can 
be obtained using (18) and (19). Also, note that this method 
can be used when there are measurement errors and the circles 
do not all intersect at a single point. In the case of MIMO, we 
consider all measured TOA signals in determining the position 
of the BSs.  

It can be observed that the number of possible location 
estimations using this technique (MLOP) is greatly increased 
as compare to the CLOP (such as LLS algorithm) meaning 
that the developed MLOP algorithms may yield various 
intersection points instead of a single common point. Fig. 8 
shows the location estimation distribution using LLS 
algorithm and MLOP algorithm for antenna mode of 
MIMO4x2 with 1000 number of samples. As can be seen in 
Fig. 8(a) estimate positions of MS are randomly distributed 
where possible numbers of MS positions are same with 
number of samples i.e 1000 locations. On the other hand, 
according to Fig. 8 (b), a hexagon shape is formed from the 
total number of possible of MS positions as in (20) i.e in this 
case there are 4096K possible locations in 1000 samples. It 
can be expected that the increasing numbers of possibilities of 
MS location produce the better optimal location estimation by 
averaging all the intersection points. It is however, increasing 
number of intersection points resulting in high processing time 
and finally can reduce the location estimation accuracy, 
especially in the case on moving MS. Therefore, 
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A. Determination of feasible 
Intersection Points in MLOP

The selection of optimal intersection 
points in MLOP algorithm is based on 
analysis performed on Table I. In this 
analysis, we consider the number of 
available BS, N is 3 with the several of 
antenna mode configurations. Note that 
we assume no LOS and single scattering 
for all TOA paths. In other words, because 
the NLOS error is positive, the measured 
range is greater than true range and it is 
assumed that the measurement noise is a 
zero mean Gaussian random distribution 
with relatively small standard deviation 
and is negligible as compared to NLOS 
error. The NLOS noise is simulated to 
be uniform distribution over the interval 
[0m, 250m]. It can be observed that from 
Table I, the RMSE mean and standard 
deviation location errors for various 
MIMO antenna mode configurations are 
nearly same for both AS and OS points. 
For example MIMO 2x1 antenna with 
selection AS points is 16 and OS points is 
4 produce RMSE location errors of 90.54m 
and 90.78m, respectively. The similar 
trend also can be observed for the other 
MIMO antenna mode configurations. We 
found that with selection of OS points, it 
can reduce the number of points about 
square of multiplication of number of 
transmitter antenna, Nt and number 
of receiver antenna, Nr. Therefore, the 
number of feasible intersections for 
possible location estimation of MS can be 
determined as following

determination of optimal intersection points which will 
produce the same results in term of location accuracy with 
lower processing time must be investigated.  

A. Determination of Feasible Intersection Points in MLOP 
The selection of optimal intersection points in MLOP 

algorithm is based on analysis performed on Table I. In this 
analysis, we consider the number of available BS, N is 3 with 
the several of antenna mode configurations. Note that we 
assume no LOS and single scattering for all TOA paths. In 
other words, because the NLOS error is positive, the measured 
range is greater than true range and it is assumed that the 
measurement noise is a zero mean Gaussian random 
distribution with relatively small standard deviation and is 
negligible as compared to NLOS error. The NLOS noise is 
simulated to be uniform distribution over the interval [0m, 
250m]. It can be observed that from Table I, the RMSE mean 
and standard deviation location errors for various MIMO 
antenna mode configurations are nearly same for both AS and 
OS points. For example MIMO 2x1 antenna with selection AS 
points is 16 and OS points is 4 produce RMSE location errors 
of 90.54m and 90.78m, respectively. The similar trend also 
can be observed for the other MIMO antenna mode 
configurations. We found that with selection of OS points, it 
can reduce the number of points about square of multiplication 
of number of transmitter antenna, Nt and number of receiver 
antenna, Nr. Therefore, the number of feasible intersections for 
possible location estimation of MS can be determined as 
following

( ) ( )2 2est t rN N Nϕ = × × − (20)

The most common method of estimating the MS position is by 
averaging all the feasible intersection points in (20) and given 
as following 

1 1

1 1,
est est

i iavg e e
est esti i

x y
ϕ ϕ

ϕ ϕ= =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑ ∑x  (21) 

where ( ),avg avg avgx y=x represents the location of estimated 

MS. 
However, not all the feasible intersections provide 

information of the same value for location estimation. There 
exist various methods proposed in [18] which can be 
employed for achieving high accuracy of MS position with 
less effort. In this paper we propose the Distance-Weighted 
method which promises additional improvements in system 
accuracy.

B. Distance-Weighted Technique 
The distance-weighted technique can be dynamically 

adjusted with reference to the distance square between the 
estimated MS location and the average MS location. The 
detailed steps are as follows: 
Step 1:  Find all the feasible intersections of the MLOP. 

Step 2: The MS location is estimated by averaging these 
remaining feasible intersections given in (21). 
Step 3:  Referring to Fig. 9, we calculate the distance,
between each remaining feasible intersection 
and the average location given in (21) 

; 1
ii avg e estiδ ϕ= − ≤ ≤x x  (22) 

where  denotes the norm operation over a vector with 
.

Step 4: Set the weight for the ith remaining feasible 
intersection to . . 

avgx

1e
x 2ex

3ex
4ex

1δ 2δ

3δ4δ

Fig. 9 Distance Weighted Method for MIMO2x1 Antenna System 

TABLE I
ANALYSIS OF LOCATION ERROR AT VARIOUS POINTS OF INTERSECTIONS WITH 

DIFFERENT ANTENNA MODE CONFIGURATIONS

Antenna Mode 
Configurations 

Selection of 
Intersection 

Points 
Equations 

RMSE [meter] 

Mean Std Dev 

MIMO2x1 
AS 16 90.54 45.12 
OS 4 90.78 45.69 

MIMO2x2 
AS 256 62.87 31.04 
OS 16 63.58 32.15 

MIMO4x2 
AS 4096 44.78 23.31 
OS 64 43.92 23.65 

MIMO4x4 
AS 65536 31.74 17.38 
OS 256 32.34 17.83 

Note: AS – Select All Intersection points, OS – Select Optimal intersections 
points
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Step 2: The MS location is estimated 
by averaging these remaining feasible 
intersections given in (21).
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Step 3:  Referring to Fig. 9, we calculate 
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the average location given in (21)
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exist various methods proposed in [18] which can be 
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V. SIMULATION AND DISCUSSION

The performance of the proposed algorithm is investigated 
via computer simulation where a comparison is made between 
SISO and various MIMO antenna mode configurations and the 
algorithm is also compared to LLS algorithm.  In this work, 
the location estimation accuracy is checked for the situations 
of 3 BSs and simulations are performed under the assumption 
of macrocell cellular environments. The geometric coordinates 
of BSs are ,

,
,and the geometric coordinate of 

true MS is . All units are 
expressed in meter. The simulated parameters have been 
selected similar to that IEEE802.16e downlink system and the 
dispersive delay properties of the channel introduce range 
errors up to 600m [19].  The simulated location error has the 
total number of 1000 different data sets and the estimation MS 
position is obtained by averaging over all the 1000 estimates. 
It is however, the feasible estimates MS position for each 
independent data sets is acquired using the method proposed 
in Section IV-B. The TOA measurements are created by 
calculating the true distance from a MS position to the known 
BS with MIMO capability and were each corrupted by NLOS 
errors.  

A. Effects of the NLOS Distribution 
In order to analyses the effect of the NLOS errors on the 

performance of location estimation, four models of NLOS 
models were generated according to different probability 
density functions such as CDSM model, RCDSM model, ROS 
model and uniform distribution as illustrated in Fig. 1. The 
NLOS range errors are modeled as positive random variables 
having support over [0, 600m], generated according to various 
NLOS models explained in Section II-A.

Fig. 10 show the performance of the MLOP algorithm for 
MIMO 2x2 and MIMO 4x4 on CDSM, RCDSM, ROS and 
uniform models. It can be seen that from Fig. 10(a) and Fig. 
10(b) for the CDSM that has weakest NLOS features, the 
accuracy of location estimation is greater than other situations, 
but ROS perform slighty poor while RCDSM and uniform 
models have only minor degradation. It is shown that CDSM 
has satisfy the FCC requirement of 67% (below 100m) and 
95% (below 300m) of the time for both antenna mode 
configurations while the other NLOS models  do not satisfy 
for the 67% of location error for the case of MIMO2x2 
antenna mode configuration.   

Meanwhile, Fig. 11 shows the cumulative distribution 
functions of the average RMSE location error of the 
algorithms for various antenna mode configurations when the 
range errors are generated using  the CDSM model. It can be 
seen that under the case of MIMO antenna mode 
configurations, the MLOP algorithm perform very well than 
the LLS algorithm for the error model considered.  
Meanwhile, under the case of SISO antenna mode 
configuration, we can see that the performance both MLOP 
and LLS algorithms are nearly identical.  

B. Effect of the Number of NLOS BSs 
Simulations were performed to study how the average 

location error is affected by the number of BSs that do not 
have an LOS path to MS when MLOP algorithm are employed 
for various antenna mode configurations. Except for the case 
when all BSs are NLOS, the serving BS was assumed to be 
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work, the location estimation accuracy 
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and simulations are performed under 
the assumption of macrocell cellular 
environments. The geometric coordinates 
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that IEEE802.16e downlink system and the 
dispersive delay properties of the channel 
introduce range errors up to 600m [19].  
The simulated location error has the total 

number of 1000 different data sets and 
the estimation MS position is obtained 
by averaging over all the 1000 estimates. 
It is however, the feasible estimates MS 
position for each independent data sets 
is acquired using the method proposed in 
Section IV-B. The TOA measurements are 
created by calculating the true distance 
from a MS position to the known BS 
with MIMO capability and were each 
corrupted by NLOS errors. 
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In order to analyses the effect of the 
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location estimation, four models of NLOS 
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different probability density functions 
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ROS model and uniform distribution 
as illustrated in Fig. 1. The NLOS range 
errors are modeled as positive random 
variables having support over [0, 600m], 
generated according to various NLOS 
models explained in Section II-A. 

Fig. 10 show the performance of the 
MLOP algorithm for MIMO 2x2 and 
MIMO 4x4 on CDSM, RCDSM, ROS and 
uniform models. It can be seen that from 
Fig. 10(a) and Fig. 10(b) for the CDSM 
that has weakest NLOS features, the 
accuracy of location estimation is greater 
than other situations, but ROS perform 
slighty poor while RCDSM and uniform 
models have only minor degradation. It 
is shown that CDSM has satisfy the FCC 
requirement of 67% (below 100m) and 
95% (below 300m) of the time for both 
antenna mode configurations while the 
other NLOS models  do not satisfy for 
the 67% of location error for the case of 
MIMO2x2 antenna mode configuration.
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C.	 Effect	of	Magnitude	of	NLOS	on	
Location Accuracy

The radius of scatterers, Rd  determines 
the maximum magnitude of NLOS error 
with CDSM, namely 2Rd. For uniformly 
distributed noise, the NLOS error can be 
any value in the range (0,UN) where UN 
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were performed to examine how the 
MLOP algorithm compares against the 
LLS algorithm for various antenna mode 
configurations when Rd and UN are varied. 

LOS with the MS. However, the algorithms do not have prior 
knowlegde of the LOS and NLOS status of the BSs. This 
performance also was compared with LLS algorithm as shown 
in the Fig. 12. As can be observed, the average location error 
increase with the number of NLOS BSs for SISO antenna, but 
the average location error for MIMO antennas only rises up 
with one NLOS BS and then it dramatically decreases when 
two and more NLOS BSs are involved. In other words, we can 
say that the MIMO antenna configurations are capable to 
mitigate the effect of NLOS errors.  It can also be seen that 
MLOP algorithm performed better than LLS algorithm in spite 
of the number of NLOS BSs. 

C. Effect of Magnitude of NLOS on Location Accuracy 
 The radius of scatterers, Rd  determines the maximum 

magnitude of NLOS error with CDSM, namely 2Rd. For 
uniformly distributed noise, the NLOS error can be any value 
in the range (0,UN) where UN is the upper bound. Finally, 
simulations were performed to examine how the MLOP 
algorithm compares against the LLS algorithm for various 

antenna mode configurations when Rd and UN are varied.  
Fig. 13 shows the average RMSE location error versus the 

radius of scatterer of CDSM, Rd. Generally, it is can be 
expected that the perfomance of any location algorithm 
deteriotes when the amount of noise, in this case NLOS error, 
in range measurement increases. It can be observed from Fig. 
13 that the sensitivity of the MLOP algorithm to increase in 
maximum NLOS magnitude is less than the LLS algorithm for 
MIMO2x2 and MIMO 4x4 systems, however different in the 
case of SISO where the CDFs for LLS and MLOP algorithms 
perform nearly identical with increase of Rd.

On the other hand, Fig. 14 shows the average RMSE 
location erros versus the upper bound on uniform NLOS 
error,UN. It can be observed that the performance of MIMO 
antenna mode configurations using the MLOP algorithm are 
much better than the  MIMO antenna mode configurations 
using the LLS algorithm whereas performance for SISO 

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average RMSE [meter]

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

SISO CDSM (MLOP)
MIMO2x2 CDSM (MLOP)
MIMO4x4 CDSM (MLOP)
SISO CDSM (LLS)
MIMO2x2 CDSM (LLS)
MIMO4x4 CDSM (LLS)

Fig. 11 The CDF of the Location Error of the MLOP and LLS algorithms for
Different Antenna Mode Configurations on the CDSM Model 

0 1 2 3
0

20

40

60

80

100

120

140

160

Number of NLOS BS

R
M

S
E

 [M
et

er
]

SISO LLS
MIMO2x2 LLS
MIMO4x4 LLS
SISO MLOP
MIMO2x2 MLOP
MIMO4x4 MLOP

Fig. 12 Average RMSE For Different Antenna Configurations Versus the
Number of NLOS BSs 

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

Radius of Scatterer, Rd [meter]

 A
ve

ra
ge

 R
M

S
E

 [m
et

er
]

SISO LLS
SISO MLOP
MIMO2x2 LLS
MIMO2x2 MLOP
MIMO4x4 LLS
MIMO4x4 MLOP

Fig. 13 Average RMSE Location Erros versus the Disc Radius of CDSM, Rd

100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

Upper Bound on NLOS Range Error [meter]
 A

ve
ra

ge
 R

M
S

E
 [m

et
er

]

SISO LLS
SISO MLOP
MIMO2x2 LLS
MIMO2x2 MLOP
MIMO4x4 LLS
MIMO4x4 MLOP

Fig. 14 Average RMSE Location Erros versus the Upper Bound on Uniform
NLOS Error Fig. 12 Average RMSE For Different Antenna 

Configurations Versus the Number of NLOS 
BSs

Fig. 13 shows the average RMSE location 
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CDSM, Rd. Generally, it is can be expected 
that the perfomance of any location 
algorithm deteriotes when the amount 
of noise, in this case NLOS error, in 
range measurement increases. It can be 
observed from Fig. 13 that the sensitivity 
of the MLOP algorithm to increase in 
maximum NLOS magnitude is less than 
the LLS algorithm for MIMO2x2 and 
MIMO 4x4 systems, however different in 
the case of SISO where the CDFs for LLS 
and MLOP algorithms perform nearly 
identical with increase of Rd.
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On the other hand, Fig. 14 shows the 
average RMSE location erros versus the 
upper bound on uniform NLOS error,UN. 
It can be observed that the performance 
of MIMO antenna mode configurations 
using the MLOP algorithm are much 
better than the  MIMO antenna mode 
configurations using the LLS algorithm 
whereas performance for SISO antenna 
mode configurations is nearly similar for 
both algorithms. It has been shown that 
the MLOP algorithms can further improve 
the accuracy of location estimation with 
MIMO antenna mode configurations.
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vI. CONCLUsION

In this paper we presented a geometrical 
approach using MLOP technique for 
MIMO antenna mode configuration in 
IMT-Advanced networks for location 
estimation with range measurements 
from only three BSs in the NLOS 
environments and their performances 
have been compared with SISO antenna. 
The technique utilizes relationships 
drawn from the geometry of the BSs and 
ranges linear LOP, and it does not require 
discrimination between LOS and NLOS 
range measurements. The geometrical 
solution found the intersection of the 
MLOPs and used the distance-weighted of 
those intersections to find better location 
estimation. Simulation results showed 
the location estimation accuracy of MLOP 
was much better when compared to that 
of the LLS for MIMO antenna mode 
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configurations. It was observed that the 
average location error for MIMO antennas 
decrease when two and more NLOS BSs 
were involved. Simulations also showed 
that the upper bound of the uniform 
error distribution have an influence on 
the location estimation accuracy The 
location error of MLOP for various MIMO 
antenna mode configurations is less than 
0.1km for 67% of the time, and less than 
0.17km for 95% of the time. The results of 
the simulation compliance to the location 
accuracy demand of E-911 requirements 
[20]. Hence it is proven that enabling the 
MIMO antenna mode configurations in 
IMT-Advanced positioning systems using 
MLOP algorithm can further improve 
their location accuracy even in the severe 
NLOS conditions.
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