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Abstract— This study presents a detailed analysis of Iterative Self 

Organizing Data Analysis (ISODATA) clustering for 

multispectral data classification. ISODATA is an unsupervised 

classification method which assumes that each class obeys a 

multivariate normal distribution, hence requires the class means 

and covariance matrices for each class. In this study, we use 

ISODATA to classify a diverse tropical land covers recorded 

from Landsat 5 TM satellite. The classification is carefully 

examined using visual analysis, classification accuracy, band 

correlation and decision boundary. The results show that 

ISODATA is able to detect eight classes from the study area with 

93% agreement with the reference map. The behavior of mean 

and standard deviation of the classes in the decision space is 

believed to be one of the main factors that enable ISODATA to 

classify the land covers with relatively good accuracy.  
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I. INTRODUCTION 

 Studies on classification of remote sensing data have 

long been carried out by numerous researchers worldwide, 

with more efforts made regionally than globally. Many 

regional studies have been carried out in places such as Europe 

and America [1] due to having an up-to-date remote sensing 

facilities as well as ground truth information. There is also an 

increasing interest to carry out such studies in climate-affected 

regions such as Africa [2]  and highly populated regions such 

as India and China [3]. Nonetheless, not much effort has been 

expended in Tropical countries such as Malaysia [4], [5] 

despite their recent promising developments in remote sensing 

capabilities [6]. Two types of methods that are commonly used 

are supervised and unsupervised classification. Supervised 

classification classifies pixels based on known properties of 

each cover type; therefore it requires representative of land 

cover information, in terms of training pixels. On the other 

hand, in unsupervised classification, the clustering process 

produces clusters that are statistically separable, giving a 

natural grouping of the pixels. This approach is useful when 

reliable training data are either limited or expensive, and when 

there is insufficient a priori information about the data [7]. 

Two types of commonly used unsupervised classification are 

K-means and ISODATA. K-means is a simple clustering 

procedure that attempts to find the cluster centres in the data, 

then aims to cluster the full set of pixels into K clusters. The 

main disadvantage is that K-means requires the number of 

clusters is known a priori [8]. The main advantage of 

ISODATA over K-means algorithm is that ISODATA allows 

different numbers of clusters (ranging from a minimum to a 

maximum number of clusters) to be specified [8]; therefore is 

more adaptable and flexible than K-means. This study presents 

a detailed analysis of ISODATA clustering for Malaysian land 

covers using Thematic Mapper (TM), a medium resolution 

multispectral sensor on board Landsat 5 satellite. This makes 

use qualitative and quantitative approaches. Hopefully, this 

analysis, although limited to a single scene, will provide some 

insight in application of ISODATA on multispectral image 

classification. 

II. LANDSAT SATELLITE 

One of the most common remote sensing satellites is 

Landsat, initiated by NASA (National Aeronautical and Space 

Administration) in 1972 [9]. The Landsat satellites have been 

providing optical data for almost 40 years. In this study, we 

make use the Landsat 5 TM data; the satellite was launched on 

March 1, 1984 and is the longest running satellite of the series. 

The Landsat 5 satellite specifications are given in Table 1.  

 

Table 1. Landsat 5 TM satellite specifica tions [9]. 

Parameter Description 

Spectral Bands 4 VNIR, 2 SWIR, 1 thermal 

Spatial Resolution (IFOV) 
30 m – VNIR, SWIR 

120 m – thermal 

Sampling 1 samples/IFOV along scan 

Cross Track Coverage 185 km 

Radiometric Resolution 8 bits 

Radiometric Calibration Internal lamps, shutter and black body 

Scanning Mechanism 
Bidirectional Scanning with Scan Line 

Corrector 

Period of Operation 
Landsat 5: 1984 – present 

 

Main Sensor TM 

Altitude 705 km 

Repeat Cycle 16 days 

Equatorial Crossing  9:45 AM +/- 15 minutes 

Type Sun synchronous, near polar 

Inclination 98.2° 
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Landsat 5 TM level 1 data come in Product Generation 

System (LPGS) format and need to be converted into a 

physically meaningful common radiometric unit, representing 

the at-sensor spectral radiance. The Level 1 Landsat 5 TM 

data received by users are in scaled 8-bit numbers, calQ . 

Conversion from calQ  to spectral radiance, �L , can be done 

by using [10]: 
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where, �L  is the spectral radiance at the sensor's aperture (W/ 

m
2
 sr �m), calQ  is the quantized calibrated pixel value, 

calminQ  is the minimum quantised calibrated pixel value 

corresponding to min �L , calmaxQ  is the maximum quantised 

calibrated pixel value corresponding to max�L , min �L  is the 

spectral at-sensor radiance that is scaled to calminQ  (W/ m
2
 sr 

�m) and max�L  is the spectral at-sensor radiance that is scaled 

to calmaxQ  (W/ m
2
 sr �m). calminQ  and calmaxQ  are 1 and 255 

respectively.  

 

Scene-to-scene variability can be reduced by converting 

the at-sensor spectral radiance to top-of-atmosphere (TOA) 

reflectance, also known as in-band planetary albedo. By 

performing this conversion, the cosine effect of different solar 

zenith angles due to the time difference between data 

acquisitions is removed. Different values of the 

exoatmospheric solar irradiance arising from spectral band 

differences are compensated and the variation in the Earth–

Sun distance between different data acquisition dates is 

corrected. The TOA reflectance can be computed by using 

[10]: 
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where, 
��  is the planetary TOA reflectance, � is the 

mathematical constant equal to ~3.14159, �L  is the spectral 

radiance at the sensor's aperture (W m
-2

 sr
-1

 �m
-1

), d is the 

Earth–Sun distance (astronomical units), Lλ is the mean 

exoatmospheric solar irradiance (W m
-2

 �m
-1

) and s�  is the 

solar zenith angle (degrees). d can be generated from the 

NASA Jet Propulsion Laboratory (JPL) Ephemeris at 

http://ssd.jpl.nasa.gov/?horizons or can be obtained from the 

literature (e.g. [10]). Conversion to at-sensor spectral radiance 

and TOA reflectance can be performed by using built-in tools 

in high-end image processing software. 

 

III. ISODATA CLUSTERING 

The ISODATA algorithm is one of the most frequently used 

methods in unsupervised classification and normally assumes 

that each class obeys a multivariate normal distribution, hence 

requires the class means and covariance matrices for each 

class. It follows an iterative procedure and is often referred to 

as an extension of the K-means algorithm. The K-means is a 

simple clustering procedure that attempts to find the cluster 

centres in the data, then aims to cluster the full set of pixels 

into K clusters. Initially, both approaches assign arbitrary 

cluster centres and the cluster means and covariances are 

calculated. Each pixel is then classified to the nearest cluster. 

New cluster means and covariances are then calculated based 

on all the pixels in that cluster. This process is repeated until 

the change between iterations is “small enough”. The change 

can be quantified either by measuring the distances the cluster 

mean has changed from one iteration to the next or by the 

percentage of pixels that has changed between iterations. The 

main difference between ISODATA and the K-means 

algorithm is ISODATA allows different numbers of clusters 

(ranging from a minimum to a maximum number of clusters) 

to be specified, while K-means assumes the number of clusters 

is known a priori [8]. In more detail, the steps in ISODATA 

clustering are as follows:  

 

1. Enter number of clusters. 

 

2. The clustering first selects arbitrary initial cluster centres 

and then distributes the pixels among the cluster centres 

using:  

 

( ) ( )i if for all j i∈ − < − ≠i jx � x � � x �
 

(3) 

 

where i�  and j�  are cluster centres for cluster i and j 

respectively and ( )� x  is the feature vector at position x . 

 

3. The new cluster centre for class i is computed by 

averaging the values of the pixels  assigned to the class 

(i.e. a new class mean is calculated): 

 

( )
x ii

1
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where K   is number of clusters and iQ  is the number of 

pixels in class i. At the same time, the cluster covariance is 

calculated.     

 

4. The pixels are then classified to the nearest cluster, and 

the new cluster mean and covariance are calculated. 

 

5. If the change between the initial cluster and the new 

cluster is not small enough or the parameter values in (1) 

have not been satisfied, steps 4 to 5 are repeated 

otherwise, the clustering process ends. 
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IV. CLASSIFICATION USING ISODATA 

The study area was located in Selangor, Malaysia, covering 

approximately 840 km
2
 within longitude 101° 10’ E to 

101°30’ E and latitude 2°99’ N to 3°15’ N. The satellite data 

come from bands 1, 2, 3, 4, 5 and 7 of Landsat-5 TM dated 

11
th

 February 1999 (Figure 1(b)). The data was chosen 

because have minimal cloud and free from haze, which 

normally occurs at the end of the year [11]. Prior to any data 

processing, the cloud and its shadow were masked out based 

on threshold approach [12]. Visual interpretation of the 

Landsat data was then performed, aided by a reference map 

(Figure 1(a)), produced in October 1991 using ground 

surveying and SPOT satellite data by the Malaysian Surveying 

Department and Malaysian Remote Sensing Agency. 11 main 

classes identified were water, coastal swamp forest, dryland 

forest, oil palm, rubber, industry, cleared land, urban, sediment 

plumes, coconut and bare land. Before carrying out ISODATA 

clustering, the number of clusters we needs to be defined here 

use values from 5 to 12. After the clustering process ended, 

the clusters were manually labelled to the nearest match, based 

on the reference image (Figure 1(b)). ISODATA clustering 

generates a cluster map with clusters assigned to arbitrary 

colours. In the labelling process, each cluster is matched to a 

class (or classes) from the reference image and given a 

specific colour so that at the end of the labelling process, 

classes (i.e. single or multiple) that exist in the cluster map can 

be easily recognised by their colours. This is performed for all 

the cluster maps. An attempt was made to match as many 

classes as possible to the clusters produced by the ISODATA 

clustering, but only 8 were found to sensibly match the 

clusters. They are water, coastal swamp forest, dryland forest, 

sediment plumes, industry, cleared land, oil palm and urban.  
 

 

 

 

Figure 1. The study area from (a) the land cover map and (b) the 

Landsat-5 TM bands 5, 4, 3 assigned to the red, green blue channels. 

 

After the merging process, the 9-, 10-, 11-, and 12- cluster 

maps (Figure 2 (a) to (d)) contain 8 clusters which were 

assigned to the urban (red), bare land (grey), oil palm 

(yellow), dryland forest (blue), coastal swamp forest (green), 

cleared land (dark purple), sediment plumes (sea green) and 

water (white) classes. 

 

 
Figure 2. (a) 9-, (b) 10-, (c) 11- and (d) 12- cluster maps that possess 8 clusters 

after cluster merging. 

 

It is noticeable that in the 9-cluster map some portions of 

dryland forest are being classified as coastal swamp forest, 

while in the 11- and 12- cluster maps some portions of coastal 

swamp forest are classified as dryland forest. The 10-cluster 

map (Figure 2(b)) is able to cluster the pixels that correspond 

to the major classes (viz. water, coastal swamp forest, dryland 

forest, oil palm, cleared land, bare land, urban and sediment 

plumes) better than other cluster maps, thus is more 

preferable. Nevertheless, three classes cannot be detected by 

the ISODATA clustering. They are rubber, coconut and bare 

land; this is due to the fact that these classes are statistically 

similar with other classes that they tend to merge with those 

classes.  

Figure 3 is the enlarged version of Figure 2(b); coastal 

swamp forest and dryland forest can be clearly seen in the 

south-west and north-east of the classified image, as indicated 

by the reference map. Coastal swamp forest covers most of the 

Island and coastal regions in the south-west of the scene. Most 

of the dryland forest can be recognised as a large straight-

edged region in the north-east. Oil palm dominates the 

northern parts while urban the southern parts. Industry can be 

recognised as patches near the urban areas, especially in the 

south-west and north-east. A quite large area of cleared land 

can be seen in the northern parts and seems to be surrounded 

by the oil palm. Sediment plumes can be seen on the northwest 

of the image. The area of the detected classes in km and 

percentage is given in Table 2. The biggest class is oil palm 

(300 km
2
), followed by cleared land (146 km

2
) and urban (139 

km
2
). The smallest class is only 17 km

2
 and is possessed by 

industry and sediment plumes.  

 
Table 2. Classes determined by ISODATA, with corresponding areas in 

squared kilometres and percentage. 
Class Area 

(km2) (%) 

Cleared land 146 17.4 

Urban 139 16.6 

Oil palm 299 35.6 

Water 98 11.7 

Coastal swamp forest 67 8.0 

Industry 17 2.0 

Dryland forest 55 6.6 

Sediment plumes 17 2.0 
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Figure 3. ISODATA clustering for 10 clusters (reduced to eight clusters.  

V. DATA ANALYSIS 

A. Accuracy Analysis 

Accuracy assessment of the ISODATA classification was 

determined by means of a confusion matrix (sometimes called 

error matrix), which compares, on a class-by-class basis, the 

relationship between reference data (ground truth) and the 

corresponding results of a classification [13]. Such matrices 

are square, with the number of rows and columns equal to the 

number of classes, i.e. 11. For all classes, the numbers of 

reference pixels are: water (9129), coastal swamp forest 

(14840), dryland forest (6162), oil palm (10492), industry 

(350), cleared land (1250), urban (2309)and sediment plumes 

(1881). The diagonal elements in Table 3(a) represent the 

pixels of correctly assigned pixels and are also known as the 

producer accuracy. Producer accuracy is a measure of the 

accuracy of a particular classification scheme and shows the 

percentage of a particular ground class that is correctly 

classified. It is calculated by dividing each of the diagonal 

elements in Table 3(a) by the total of each column 

respectively: 

 

aa

a

c
Producer accuracy 100%

c•

= ×    (5) 

 

 where, 

th th

aa

a

c element at position a row and a column

c column sums•

=

=
 

 

The minimum acceptable accuracy for a class is 90% [13]. 

Table 3(b) shows the producer for all the classes. It is obvious 

that five classes possess producer accuracy higher than 90%: 

coastal swamp forest gives the highest (100%) and cleared 

land the lowest (32%). The relatively low accuracy of cleared 

land is mainly because 50% and 14% of its pixels were 

classified as urban and industry. The misclassification of 

cleared land pixels to the urban class is due to the fact that 

cleared and urban have quite similar physical properties, so 

tend to have similar spectral behaviour and therefore can 

easily be misclassified as each other. User Accuracy is a 

measure of how well the classification is performed. It 

indicates the percentage of probability that the class which a 

pixel is classified to on an image actually represents that class 

on the ground [13]. It is calculated by dividing each of the 

diagonal elements in a confusion matrix by the total of the row 

in which it occurs: 

 

ii

i

c
User accuracy 100%

c •

= ×    (6) 

 

where, 
ic row sum• = . Coastal swamp forest, dryland forest, 

oil palm and water show a user accuracy of more than 90%. 

Urban and industry possess accuracy between 70% and 90%. 

As expected, the worst user accuracy is possessed by cleared 

land (45%). A measure of overall behaviour of the ISODATA 

clustering can be determined by the overall accuracy, which is 

the total percentage of pixels correctly classified: 

U

aa
a 1

c

Overall accuracy 100%
Q

== ×

�
   (7) 

where, Q  and U  is the total number of pixels and classes 

respectively. The minimum acceptable overall accuracy is 

85% [14]. The Kappa coefficient, κ  is a second measure of 

classification accuracy which incorporates the off-diagonal 

elements as well as the diagonal terms to give a more robust 

assessment of accuracy than overall accuracy. It is computed 

as [8]: 

 
U U
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Q Q
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where ac row sums• = . The 10-cluster map (Figure 3) yielded 

an overall accuracy of 93.1%, with kappa coefficient 0.91, 

indicating quite good agreement with the ground truth pixels. 

 
Table 3.(a) Confusion matrix and (b) producer and user accuracy for 

ISODATA clustering. 

 
(a) 

 
(b) 
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B. Correlation Matrix Analysis 

Classification uses the covariance of the bands; 

nonetheless, covariance is not intuitive; more intuitive is 

correlation, k,lρ , i.e. covariance normalised by the product of 

the standard deviations of bands, k  and l : 

 

( ) ( )( )k k l lk,l
k,l

k l k l

E I IC − µ − µ
ρ = =

σ σ σ σ  (9) 

where k,lC  is the covariance between bands k  and l , k�  and 

l�  are the standard deviations of the measurements in bands  

k  and l  respectively, E  is the expected value operator, and 

kI  and lI  and kµ  and lµ  are the intensities and means of 

bands  k  and l  respectively.  When using more than two 

bands, it is convenient to use a correlation matrix, where the 

element in row m  and column n  that correspond to band k  

and l  is given by 
k,l� . If m n= , then 

k,l� 1= , so this will 

be the value of the diagonal elements of the matrix. Otherwise, 

if m n≠ , k,l�  lies between -1 and 1. In order to analyse the 

correlation matrices, plots of correlation versus band pair for 

all classes are plotted. Figure 4 shows correlation between 

band pairs from all identified classes, i.e. (a) water, (b) urban, 

(c) coastal swamp forest, (d) cleared land,   (e) dryland forest, 

(f) industry, (g) oil palm and (h) sediment plumes. Each 

coloured curve represents correlation between a specific band 

(given by a specific colour) with all bands (on the x-axis). 

Landsat bands 1, 2 and 3 are located within a very close 

wavelength range of the visible spectrum, with their centre 

wavelengths differing only by about 0.1 µm. Measurements 

made from these bands normally exhibit similar responses and 

therefore are highly correlated (pink curves). Poor correlations 

may result from mixed pixel problem (existence of more than 

one class in a pixel). Correlations between lower-numbered 

bands (i.e. bands 1, 2 and 3) and higher-numbered bands (i.e. 

bands 4, 5, and 6) are much lower because involving non-

adjacency wavelengths. For industry, correlation in most band 

pairs is quite high in ISODATA clustering due to having quite 

uniform surface materials, i.e. hard and bright surfaces and 

therefore very reflective. In other words, for industry, there are 

very strong relationships of variation between the brightness 

of pixels and mean brightness in all bands (1, 2, 3, 4, 5 and 7). 

For water, there is an increasing trend for the band pairs as one 

of the band number increases. This shows the difference of the 

spectral response for water when sensed from different bands; 

water normally has a very low reflectance in visible bands 

(bands 1, 2 and 3) and almost no reflectance at all in near 

(band 5) and mid infrared bands (band 7). 

C. Mean, Standard Deviation and Decision Boundary 

Analysis 

Despite of being very similar, both forests can still be 

separated quite effectively from each other using ISODATA 

clustering (see Figure 3). Here, we investigate further the 

forests in terms of mean, standard deviation and decision 

boundary. Figure 5(a) shows the means and (b) standard 

deviation of coastal swamp forest and dryland forest classes in 

ISODATA clustering. The means are almost the same 

particularly in bands 1, 2, 3 and 4, while dryland forest has a 

bigger mean than coastal swam forest for band 5 and 7. This 

shows that the means for band 5 and 7 are important in 

separating between the two forests.  The standard deviation of 

coastal swamp forest is bigger than dryland forest bands 1, 2 

and 3, about the same in band 4 and 7 and vice versa for band 

5. Band 4 has the biggest standard deviation, indicating its 

ability to sense the variability within the forests, therefore is 

important to differentiate between plant species if further 

subclassification is to be made. 

 

 
Figure 4. Correlations between band pairs for (a) water, (b) coastal swamp 

forest, (c) dryland forest, (d) oil palm, (e) urban, (f) cleared land, (g) industry 

and (h) sediment plumes. 

 

 
Figure 5. (a) Means of coastal swamp forest and dryland forest classes in 

ISODATA clustering classification. DLF and CSF are dryland forest and 

coastal swamp forest respectively. (b) Standard deviations of the coastal 

swamp forest and dryland forest classes. 

 

We subsequently generated the decision boundaries using 

Equation (8) between coastal swamp forest and dryland forest. 

Figure 6 shows 15 sets of decision boundaries; ‘M1’ and ‘M2’ 
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are the means for dryland forest and coastal swamp forest 

respectively, ‘Band k Vs. Band l’ denotes that the vertical axis 

is band k while horizontal axis is band l and ‘CSF’ and ‘DLF’ 

indicate coastal swamp forest and dryland forest respectively. 

The decision boundaries formed by the ISODATA clustering 

have the form of conic sections, i.e. pairs 2:1, 3:1 and 3:2 form 

an elliptic curve, pairs 5:1, 7:1, 5:2, 7:2, 5:3, 7:3, 7:5, 5:4 and 

7:4 form a parabolic curve and pairs 4:1, 4:2 and 4:3 form a 

hyperbolic curve. Most of the regions enclosed by the 

boundary are owned by coastal swamp forest due to the 

smaller standard deviation of coastal swamp forest than 

dryland forest in most of the bands. It can be seen that M1 and 

M2 are being located within the same boundary for pairs 2:1, 

3:1, 4:1, 3:2, 4:2 and 4:3 due to very small difference in mean 

in these bands (see Figure 5). For the rest of the pairs, i.e. 5:1, 

7:1, 5:2, 7:2, 5:3, 7:3, 5:4, 7:4 and 7:5, M1 and M2 are 

positioned in the different sides of the boundary because it 

comprises of bands that seem having suitable wavelengths for 

the forests separation. 

 

 
Figure 6. Decision boundaries between coastal swamp forest and dryland 

forest. ‘M1’ and ‘M2’ are the means for dryland forest and coastal swamp 

forest respectively. ‘Band k Vs. Band l’ denotes that the vertical axis is band k 

while horizontal axis is band l and ‘CSF’ and ‘DLF’ indicate coastal swamp 

forest and dryland forest respectively. 

VI. CONCLUSION 

 In this study, a detailed analysis of ISODATA clustering 

has been performed. ISODATA clustering classifies pixels 

purely based on the statistical properties of the data and does 

not require prior knowledge on the land cover types. The study 

shows that ISODATA clustering able to classify eight classes 

that exist in the study area with a good agreement with the 

reference map (overall accuracy 93% and kappa coefficient 

0.91). The major drawback to ISODATA is that it misses 

small classes within the scene due to the highly-dependency 

on the statistical properties of the data. The behaviour of the 

means and the standard deviations as observed in the decision 

space are to be the main factors that lead to the relatively good 

classification accuracy of ISODATA clustering. 
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