
Proceedings of DET2008
5th International Conference on Digital Enterprise Technology

Nantes, France
22-24 October 2008

DEVELOPMENT OF AN OPEN SOFT CNC SYSTEM
BASED ON STEP-NC AND FUNCTION BLOCKS

M. Minhat
The University of Auckland, NZ
mmin018@ec.auckland.ac.nz

Xun W. Xu
The University of Auckland, NZ

x.xu@auckland.ac.nz

 V. Vyatkin
The University of Auckland, NZ

v.vyatkin@auckland.ac.nz

ABSTRACT
Modern manufacturing industries have put on increasing demands on computer numerical
controllers (CNC) for it to be able to work with and process higher level input data described using
languages such as STEP-NC, rather than the outdated G-codes. The research work described in this
paper is about the development of a soft CNC controller that can process STEP-NC (ISO 14649)
data. Function blocks (IEC 61499) are also used as the interface between the STEP-NC data model
and the controller. The layered STEP-NC/FB architecture is proposed, which simplifies the design
of the controller with layers responsible for data processing, data storage and execution. With the
object-oriented, Model-View-Control design pattern, the STEP-NC/FB architecture supports the
design framework, in which simulation of the machining becomes a natural and inherent part of the
design process, with seamless transition from simulation to actual machining.

KEYWORDS
CNC, STEP-NC, Function Blocks, Controller

1. INTRODUCTION
In simple terms, open CNC architecture can be
understood as having standard hardware and
software which permit system scalability, and
ensure future performance enhancement. The
development of an open CNC architecture entails
the establishment of a type of software architecture
that fits in with a “general” computer which is
independent of a control vendor, plus a
communication standard among computer
hardware, an operation system and application
software (Liu et al, 2006 and Michaloski et al,
1998). The driving force for an open CNC
architecture has been the requirement of an agile
production and autonomous CNC control for

modern manufacturing industry (Suh et al, 2002 and
Newman et al, 2007).

Most of the advanced CNC controllers and
supporting hardware have closed architecture
designs which make it difficult, if not impossible, to
incorporate advanced control schemes within the
CNC itself as well as integrate with other
manufacturing resources. Open architecture
controllers are designed to remove this type of
obstacles by creating a flexible control system that
can be attached to a wide variety of machine tool
systems in such a way that the original axis and
spindle drive motors and supporting electronic
interfaces can remain intact. Open architecture
controllers are usually constructed using standard

minicomputers, often running in a DOS or UNIX
environment and with Real-Time Dynamical Linked
Library (RTDLL) functionalities (Liu et al, 2006).
The added advantage of using modern high-speed,
consumer-grade Personal Computers (PCs) is that
the controllers can be easily made “network-fit”.

Work concerning open CNC architecture has
been one of the main topic areas in CNC research
activities since the mid 1980s, but it was not until
the early 1990s that a few commercial products
were investigated and prototyped by some leading
companies in the CNC industry (Birla et al, 1996
and Michaloski et al, 2004). World-wide, three
industrial consortiums have been active since the
early 90’s. They are the Open System Environment
for controllers (OSE) of Japan (Zhang et al, 2003),
the Open System Architecture for Controls within
Automation systems (OSACA) of Europe, and the
Open Modular Architecture Controllers (OMAC)
consortium of the USA. Though different
approaches are used, they all share a similar vision
of using open-architecture controllers in
replacement of the current closed CNC systems.

It is also fundamental for an open architecture
system to comply with industrial standards and/or
de facto industrial standards (Wang et al, 2004).
Some resistance is visible among the CNC original
equipment manufacturers (OEMs), as their system
architectures are proprietary in nature. There is
reluctance to release the information needed to
design a successful interface (Rober and Shin,
1995).

This article describes a soft-CNC with an open
architecture that works on a PC. This soft-CNC can
be used to test various STEP-NC data files without
having to resort to a physical machine tool. To
ensure the openness of the open architecture CNC
system, the following implementation technologies
are used,

(i) Object-oriented structure
(ii) Dynamic modelling using Finite State

Machine (FSM)
(iii) Use of Function Block technology
(iv) Employment of a Model-View-Control

(MVC) design pattern.

The rest of the paper will discuss the distributed

structure of the developed soft-CNC. Three types of
machining features (i.e. including Planar_Face,
Drill_Hole and Pocket1) have been tested. The
overall structure of the controller and its modular
functions are also discussed.

2. STEP-NC AND FUNCTION BLOCK
In the 21st century, two new standards emerged,
ISO14649 known as STEP-compliant numerical
control (STEP-NC) and IEC 61499 function blocks.

The Application Reference Models (ARM) of
STEP-NC has been published in various parts, e.g.
ISO 14649-1 (2003, ISO 14649-10 (2004), ISO
14649-11 (2004) and ISO 14649-111 (2003).

STEP-NC serves as an extension of STEP to NC,
allowing an integrated environment between
CAD/CAM and CNC (Xu et al. 2005, Xu and
Newman, 2006). The information contained in a
STEP-NC file is divided in three subsections:

• workplan executables;
• technology description;
• geometry description;

Workplan is characterized by a series of

executables whose order may be pre-established, or
dependent on the actual machining conditions.
There are three types of executables. They are
Workingsteps, CNC functions and part program
structures. Among them, Workingsteps are the most
important executable. They define machining
operations together with machining features (Figure
1).

Figure 1 - STEP-NC data structure

The technology description part contains a

detailed and complete description of all the
Workingsteps to be executed in a Workplan. In
particular, this description includes data regarding
tools, machining strategies, definitions of the
workpieces, etc. A Workplan gives a list of
sequenced Workingsteps to be executed. Workpiece
information is also given. Figure 2 shows a detailed
scheme of the described main entities.

Figure 2 – A tree-view of STEP-NC entities

In the early 2005, International Electrotechnical

Commission (IEC) published IEC 61499 (2005) that
standardizes some aspects of the application of
software modules called ‘function blocks’ in
distributed industrial-process measurement and
control systems (IPMCS). The IEC-61499 function
block specifications provide a new standard to meet
the requirements based on an explicit event-driven
model and also provide data flow and finite-state
automata-based control (Dubinin and Vyatkin,
2007). Function blocks are grouped into two types,
Basic function blocks and Composite function
blocks. A Basic function block defines the
fundamental functional relationships of events and
data. A Composite function block is a combination
of several Basic function blocks which look just like
a ‘normal’ function block from the outside (Zoilt et
al, 2007). The algorithms can be written in either
high-level programming languages (e.g. Java) or in
the IEC 61131 languages (Proctor et al, 2001) for
programmable controllers (e.g. Component-Based).
Previous research on function blocks proved that
they can be used as the enabler to encapsulate
process plans, integrate with a third-party dynamic
scheduling system, monitor the process plan during
execution, and control machining jobs. They are
also suitable for machine level monitoring, shop-
floor execution control and CNC control.

Figure 3 shows a typical function block. It is
separated into an upper and a lower part. At the

upper part the event inputs and outputs are drawn.
The data inputs and outputs are drawn at the lower
part. In the machining example, ‘Axis’ is modeled
as an input variable and connected to ‘Execute’ like
all other data inputs.

Figure 3 - An FB conforming to IEC 61499

In order to make it easy to implement function

blocks for event driven systems, event inputs and
event outputs are used. Both data inputs and outputs
are explicitly connected to an event input or event
output respectively.

Both STEP-NC and function block technology
are used in the development of the soft-CNC
system.

3. SYSTEM STRUCTURE
The architecture of the proposed system contains
four basic functional modules,

(i) Data Input Model
(ii) STEP-NC to FB Translator
(iii) Tool Path Generator
(iv) Embedded CNC-FB STEP-NC Controller

These modules are developed using the Object-

Oriented concept and are reusable in forming a
system framework. As shown in Figure 4, from
Machining Feature (MF) to Physical Output (PO), a
function block evolves from meta function block,
through object function block, to execution function
block for machining purposes.

Figure 4 - Basic functional modules of the soft-CNC

The modules of Setup Process Planning (SPP),
Machining Feature (MF) and Tool Path Data (TPD)
are responsible for product data parsing; setup
planning, machining feature sequencing, scheduling
integration and function block execution control.
The Motion Control/Process Execution (MCPE) and
Physical Output (PO) modules deal with
Workingsteps at a detailed level for each machining
operation, which include decisions to be made on
cutting tool selection, machining condition
assignment, tool path generation and machining
code generation.

Function blocks are used for data processing and
execution control within the soft-CNC system. A
five-layer structure is suggested consisting of Setup
Process Planning (SPP), Machining Feature (MF),
Tool Path Data (TPD), Motion Control/Process
Execution (MCPE) and Physical Output (PO). This
layered structure helps separate the generic process
data from the machine-specific data. This is shown
in Figure 5.

Figure 5 – Layered soft-CNC architecture

Within soft-CNC, machining features (MFs) are
used as information carriers from SPP to PO. MFs
are those shapes such as Planar_Face, Drill_Hole
and Pocket1 that can be easily produced by the
available resources and machining technologies.
Each machining feature holds a set of loosely
coupled information about how to fabricate itself,
such as machining sequence, cutter type, tool-path
generation logic and cutting conditions. Appropriate
library and sequenced machining features are then
packed into function blocks to generate a machine-
neutral tool path. This generic tool path needs to be
created only once. Other machine-specific
information is derived at runtime by an open CNC
controller after the generic tool path (a set of
function blocks) is transmitted to the STEP-NC
controller. The controller is knowledgeable of the
real-time status and the dynamics of the machine
being controlled.

3.1 Data input model
The design flow starts with the development of a
STEP-NC data model describing the part to be
manufactured. The STEP-NC input file (Part 21
physical file) (ISO 10303-21, 1994) contains both
design and machining data that are correlated to
other necessary information in part programming,
such as tooling requirements, feature parameters,
feature geometry, feature tolerances, strategy and
technology information. Data Input Model generally
consists of two divisions: generic data (machining
method, machining sequence and machine tool data)
and machine-native information (cutting tool data,
cutting conditions and tool paths).

Then the STEP-NC to FB translator generates the
equivalent function block models, which can be
manually modified using the Function Block Editor.
A basic function block can have multiple outputs
while maintaining internal hidden-state information.
This means that a function block can generate
different outputs, even if the same inputs are
applied. This functionality is of vital importance for
dynamically adjusting cutting parameters and
generating tool paths after a function block is
dispatched to a CNC controller. This is of course
done by changing the internal state of the function
block. For example, a function block of Pocket1 can
be used for roughing and finishing at the same
machine or at different machines, with different
cutting parameters and/or tool paths, by adjusting
the internal state variable of the function block to
fine-tune the algorithms in use. The behaviour of a
function block is maintained by its execution
control chart (ECC). The function block model is
structured according to the object-oriented Model-
View-Control (MVC) design pattern (Christensen,
2000). The generation of tool path is later carried

out by the STEP-NC to FB Translator and Tool Path
Generator Module, which are capable of direct
execution of function blocks. The key software
components used to implement the architecture are
discussed in the following subsections.

3.2 STEP-NC to FB translator
Kramer et al (2006) defined an NC interpreter as a
software system that translates a program as it reads
it and turns it into instructions or codes. A compiler
will translate the codes into an intermediary form,
and then invoke a linker, which turns the object file
into an executable program to produce commands to
run a machine.

The STEP-NC to FB translator developed in this
research reads the entire program before starting
execution. This is so that the entire data model can
be established at the offset. Also, to a much greater
extent than G-code (ISO 6983-1, 1982) and post-
processor, the STEP-NC to FB translator also helps
generate tool paths. Figure 6 below shows a
simplified structure for the STEP-NC to FB
translator.

Figure 6 - Structure for the STEP-NC to FB translator

The translator has four parts. The data extractor

and the main processor are similar to those of other
similar STEP-NC controllers. The other two parts,
the converter and the editor, are unique in the
developed soft-CNC system.

The data extractor can search for and extract the
essential data from a STEP-NC file. The main
processor makes decision on the entire machining
process based on Workplan and Workingstep
entities retrieved from the data extractor. At each
machining Workingstep, the main processor
activates tool path generator and hands over the
geometric and machining data based on the targeted
machining features. Figure 7 shows a screenshot of

the data extraction, creation and edition work in
progress.

3.3 Tool path generator

 This module is linked to FB Editor in the STEP-NC
to FB translator. TPG is composed of several
subroutines which implement tool path generation
for the machining features such as Planar_Face,
Drill_Hole and Pocket1. At this stage of research
the tool path generation is still done manually.

In the FB editor, the interpreted data are
converted into new command codes according to
the required tool path. The tool path information in
the STEP-NC data structure is optional and in most
cases, it is not given. Therefore, tool path generation
capability needs to be built into this soft-CNC. TPG
generates the tool path for machining of each
workingstep. Four segments of tool path are
involved. They are approach, machining, retract,
and departure. TPG generates the tool path for each
segment based on the machining strategy, e.g.
‘spiral-in’ tool approaches, and ‘X-direction’
machining path as specified by the STEP-NC date
file.

A different machining strategy will lead to
different tool path. The module enables manual
selection of a machining strategy. It can also design
the tool path for each feature using the extracted
geometry information and machining strategy.

Figure 7 – Data extractor by the translator

In order to handle data files written in the FB

format, an FB editor is developed and incorporated
into the translator. The data written in FB are
consistent with the STEP-NC data structure
(schema). To prevent erroneous operation and offer
a more convenient working method, the FB editor
adds or deletes entire lower branches. For example,
if the operator adds a new machining Workingstep
to the Workplan, the FB editor adds all subsequent
entities such as feature and operation entities.

As an example, Figure 8 shows the tool path
generated for a Planar Face cutting. A Planar Face
as specified in STEP-NC contains the following
parameters:
• feature_placement : Ref-Direction_Y;
• depth : -5 mm;
• course_of_travel, specified along the X-

direction: distance 60 mm;
• face_boundary; The translator together with the intelligent

controller is programmed using Java™. In this
project, we used Function Block Development Kit
(FBDK), a Java-based tool, originally developed by
the Advanced Technology Division of Rockwell
Automation (currently supported and distributed by
HOLOBLOC, Inc. (USA)). It contains a graphical
Function Block Editor, which is effectively an
integrated development environment that supports
graphical development of function blocks and
systems and their translation to Java™ classes. The
Function Block Run-Time (FBRT) complements the
editor with the ability to execute the compiled
function blocks. The latter can be executed on any
computer that supports the Java™ Virtual Machine.

• removal_boundary, specified as a profile
length: 50 mm.

Based this information, the module generates the

required sequences of segments the cutting tool has
to follow to completely machine the planar face.
This sequence together with the feed-rate data is
stored in a file that the soft-CNC uses to send
signals to the motor drives. The tool path generator
module has two functionalities, tool-path generation
and simulation. Machining simulation is an
important feature of this soft-CNC as there is no
hardware setup required for testing.

The intention of the future soft-CNC system is
for it to generate tool paths automatically for
various machining features.

The hardware this soft-CNC is built for is a three-
axis CNC milling machine. The user interface and a
system memory are also developed where NC
subroutines can be stored and handled for
execution.

Figure 8 – Tool path generated for a Planar Face milling

3.4 The controller

The controller has intelligence built into it to
make decisions based on the given STEP-NC input
data in the FB file in the early stage of operation.
When the controller gets the raw STEP-NC data in
an FB file, it decides whether the current machining
Workingstep is capable of guaranteeing the
accuracy or surface roughness, and decides if
additional finishing operations are needed. By the
same token, if the tolerance requirements are not as
stringent, the controller may “relax” on some of the
machining operations. After modification, the
changed data are saved in another FB file. The
system will be connected to the Internet and/or
Web-server, so that the data can be shared with
another PC. With this feedback from the controller,
the part program for production is confirmed and
updated. Afterwards, the controller can either verify
through simulations or start machining.

4. DEVELOPMENT OF THE SOFT-CNC
The soft-CNC system is developed based on the
extension of the Model-View-Controller design
pattern adapted by Christensen (2000) which is
explained in details in the next section. MVC
classes in this system are represented by IEC 61499
function block types. The CNC milling machine and
STEP-NC controller are built so that it includes
several system configurations corresponding to the
stages of the design process.

The physical framework proposes a data model
based on STEP-NC standards implemented in the
prototype controller system. Figure 9 shows the
framework of the soft CNC system. It consists of (a)
Model, (b) View and (c) Controller.

Figure 9 – MVC design pattern

The model layer reads and writes content to the

database and converts it into programmable objects
that are processed by the controller layer to carry
out the application functionality and to pass on for
display in the view layer. The view layer is the
templates or interface that the operators see and
interact with. The controller consists of a front
controller and related action code to route, filter and
process the data input and to trigger machine data
application.

It is worth noting that the model, view and
controller are conceptual layers which consist of
tool path files that can be stored on a pre-set folder
or webserver and organized internally into a
standardized directory structure. The data that is
used by the system application is stored in a
database that is accessible from the PC. Operators

interact with the application by posting request and
receiving responses via the software program
(FBDK/FBRT). The entire MVC design
architecture (system application, devices and
resources) can be distributed over multiple tasks and
events and it can be run on a single, stand-alone PC.

STEP-NC data are object-oriented and also of a
hierarchical structure with a predominantly top-
down inheritance. In this research, STEP-NC data
are represented as functional units that correspond
to layered function block architecture. In this
architecture, each layer is designed to utilize the
services of the lower one. Communications between
the layers are implemented by the communication
function blocks Publish and Subscribe.

For example, machining features are
implemented by a library of corresponding function
blocks that parameterize machining features and
machining data. Subsequent function blocks
generate the tool paths required for the respective
features. Other function blocks are used for
managing features and shape coordinates to accept
or collect data entered either manually by user, or
automatically from other data sources. In fact, the
very first set of data translated from a STEP-NC
data model are related to set-up initialization, which
include:

• Machine Coordinate System (the maximum
travel displacement of each axis).

• Workpiece (dimensions)

• Workpiece Coordinate System (Workpiece
origin)

• Path Coordinate System (Tool start point-
home positions).

4.1 Detail system configuration
According to the MVC pattern the simulation
software configuration is a composition of three
types of modules: Model, View and Controller. The
use of this pattern allows a seamless transition from
the simulation software configuration to the real
control of physical machinery.

Figure 10 shows the system configuration that
consists of four devices (in IEC 61499
terminology): MACHINING_DATA,
INTERFACE3D, STEP_NC_CONTROLLER and
SIGNAL_MAPPING, the first three corresponding
to Model, View and Control as in the MVC pattern.

Figure 10 – Soft-CNC system configuration

The elements of the configuration are as follows:

(i) Machine modelling is done by taking into

account machine’s structure, its physical
dimensions, number of axes available and the
type of inputs, outputs and movement
expected. This module is allocated to a
separate execution container (Device in the
FB terminology). The MACHINING_DATA
device is further subdivided onto seven finer
grain execution containers (resources):
‘Setup_1’, ‘Security_Plane’,
‘Clamping_Positions’, ‘Tolerance’,
‘Milling_Cutting_Tool’,
‘ModelControllerResponse’, and ‘Model3D’
types, containing the function block
applications, for modelling the machine
coordinate system (MCS), workpiece
dimension, tool travel limits, workpiece
coordinate system etc based on STEP-NC
data model.

(ii) The View module is to render the status of
the model or to provide visualisation. In the
‘Soft-CNC’ system configuration, the
INTERFACE3D device contains one
instances of the specialized ‘ImageDev3D’
resource type; it provides some very basic
viewing elements for milling operations.

(iii) The Control module, implemented in the
STEP_NC_CONTROLLER device contains
the logic for sequencing and interlocking of
operations among the modelled physical
elements. Control is achieved through
instances of the function block types
Machine, Workpiece, Tool, Points,
ToolPaths, Velocity_Control and Model.
With the usage of Signal Mapping device it

outputs the signal to the motor drive axes to
execute the machining sequences.

At the moment, the system only uses wireframe

models for graphical visualisation. The cutting tool
is represented by a cylinder. Lines represent the tool
path. The INTERFACE3D visualization simulates
what one would expect of the milling machine. This
allows for a preview of the controller motion, and
can be used as a verification method. The function
block runtime software runs on a PC and enables
the execution of the system. The very same code
can of course run on embedded devices capable of
supporting Java™.

Based on the design data of a part, the
corresponding function block application is
generated. The STEP-NC data are translated into
parameters of the corresponding function blocks.
The geometry of the machining feature is
represented as sequences of coordinate points which
are then stored. Movement between the points is
implemented by the motion controller function
blocks types, which will calculate an output to the
axes motors from the sampled positions, generated
by the calculated trajectory points.

The entire process goes as follows. It starts with
the STEP-NC data model of a part that is
represented by the BTN_ADD function blocks type.
It is then translated to the function block application
Control (allocated in the
“STEP_NC_CONTROLLER” device). Execution
containers (resources in IEC 61499 terminology)
are used to separate these data out into distinct tasks
consists of the machine (travel dimensions);
Workpiece (dimensions); Workpiece_Start; and
Tool_Start.

The “Model” device contains the function block
application, modelling uncontrolled behaviour of
the machine tools. Given input control signals the
model changes its state as the real machine tool
does. It feeds the parameters of the current state to
the device INTERFACE3D which can render FB
applications.

4.2 Interface with actuators and
visualisation
With minimal changes, the soft-CNC will be able to
execute on any computing platform supporting the
IEC 61499 function blocks: from a personal
computer with direct peripheral connection
connected to a machine tool, to an embedded device
with a distributed architecture. In the latter case, the
motor drives, corresponding to the three axes and
the display are connected to the main processing
unit via a field area network (fieldbus).

In fact, the system has been implemented using a
PC controlled CNC milling machine, a three-axis
mill which was originally supplied with a PC-based
EMC controller and a motor control unit that drives
three stepper motors. The motor control board is
connected to the PC via a parallel port. In this
configuration, only a direction signal and a single
pulse will be required to activate the motor in a
given direction. The desired behaviour of physical
interface is to utilize the raw data calculated in the
controller (in terms of feed rate) to control the real
machine (i.e. to produce the signals required to
drive the motors).

In this particular system, interfacing with
hardware is dealt with by creating an abstract device
model, called ParallelPortDev. The implementation
of the device relies on the RXTX library, providing
programming access to the hardware. The device
model allows a specific library of function blocks to
provide user interfaces to the motor drives via the
parallel port of the PC. The access process includes
opening the parallel port stream and calculating the
required direction and number of steps to traverse.
This is communicated to the Parallel_Motor
function block (Figure 11), which generates the
required output sequence of data to execute the
motor control, and in turn drives the motors on the
machine. At the completion of the sequence the
parallel port stream is closed.

Figure 11 – ParallelMotor FB

A composite function block, using the services of

the Parallel_Motor function block, is designed to
handle velocities and number of steps of all three
motors. It can be easily extended to accommodate a
fourth motor. This function block generates an
output sequence which is written to the parallel port,
and in turn drives the motors on the machine.

Geometrical parameters of the features are used
as input parameters in the corresponding function
blocks. The workpiece data model will provide
point-to-point connection to simulate the Tool Path
Generator. The controller needs to generate two
types of signals: target signals and velocity signals.
Target signals correspond to the coordinates (X, Y,
and Z) of a destination, and the velocity signals
represent the feed rate of each axis.

The visualisation component of the MVC-based
architecture of the Soft-CNC is implemented in a
3D virtual environment through the Java™
extension, Java3D. The developed visualisation
engine can render workpieces and cutting tools.
Travel constraints and axes relationships are also
modelled. The engine is accessible through the
ImageDev3D device, and utilizes a library of
rendering function block types such as
RenderAxis3D, RenderWireBox3D,
RenderCylinder3D and RenderLine3D. 3D
rendering is achieved in a three-step process.

First a JFrame object is extended to support 3D
rendering. This is done by creating a 3D Universe
within it. JFrame itself is a native object in the 2D
library Java.Swing, and handles the creation of a
window object in which to render. Next, an
interface to the function block environment is
created. This interface is called the ImageDev3D.
This is encapsulated as a function block device (as it
represents a separate subsystem). An extended
JFrame object is added as a child of the
ImageDev3D. In the final step, separate function
blocks are created that define a particular shape.
These function blocks construct Shape3D objects
which can be rendered in the 3D Universe. The
geometric data are transferred to the JFrame that
exists in the ImageDev3D. The entire process is
depicted in Figure 12. In this way it is possible to
render multiple instances of any shape, as long as
there is a function block for each instance.
Furthermore it allows other more complex
geometries to be created with ease.

Figure 12 - Visualisation through the ImageDev3D

rendering process

Each shape added to the 3D Universe is coupled

with a transform object that allows a user to
manipulate the translation, rotation and scale of the
shape. Modifying the transform object allows
dynamic motion of a shape without comprising the
original shape data. In addition the 3D visualization
supports some typical navigation abilities as seen in
many other 3D packages–namely rotate, zoom and
pan. This enhances the user-friendliness of the
interface.

5. CONCLUSIONS

The developed soft-CNC can provide a viable
platform for testing STEP-NC programs. Use
function block concept has at least two significant
benefits. It can make simulation as an intrinsic part
of the system. This is done through the “Model-
View-Controller” design pattern. Secondly, it is
easy for the system to later on to be “hooked up”
with a physical machine tool as long as the
embedded devices are function block- enabled, or
even capable of supporting Java™.
The system also has an open structure and runs from
a set of high-level data, i.e. STEP-NC. This data are
advantageous over the traditional G-code in that
more design information can be made available to
the machining process. This study also proves that
STEP-NC and function block can work hand in
hand in developing an open control system for
machining purposes.
The work reported in this paper is still ongoing. The
main focus in the near future is on automatically
interpreting STEP-NC data for construction of
function blocks, and further enhancement of the
graphic user interfaces.

Acknowledgment
The authors wish to acknowledge the contributions
from S. Wong and Z. Al-Bayaa who assisted in
developing the initial function block program.

REFERENCES
Birla, S., Egdorf, H., Igou, R. E., Michaloski, J. L.,

Sweeney, D. J., Uchida, D., Weinert, G. & Yen, C. J.,
“An Open Architecture Model of System
Development”, ASME International Mechanical
Engineering Conference and Exposition (Atlanta,
GA). 1996

Christensen, J. H., “Design patterns for systems
engineering with IEC 61499”. Conference
“Distributed Automation” (Verteile Automatisierung),
Proceedings, Magdeburg, Germany, 2000

Dubinin, V. & Vyatkin, V., “On Definition of a Formal
Semantic Model for IEC 61499 Function Blocks”,
Journal of Embedded Systems, 2007

http://www.arcweb.com/omac

http://www.osaca.org

IEC 61499. Function blocks for industrial-process
measurement and control systems - Part 1:
Architecture. 2005

ISO 6983-1. Numerical control of machines—program
format and definition of address words—Part 1: data
format for positioning, Line motion and contouring
control systems. 1982

ISO 10303-21. Industrial automation systems and
integration – Product data representation and exchange
– Part 21: Implementation methods: Clear text
encoding of the exchange structure. 1994

ISO14649-1. Industrial automation systems and
integration—Physical Device Control—Data model
for computerized numerical controllers—Part 1:
Overview and fundamental principles. 2003

ISO14649-10. Industrial automation systems and
integration—Physical device control—Data model for
computerized numerical controllers—Part 10: Data
model for computerized numerical controllers—Part
10: General process data. 2004

ISO 14649-11. Industrial automation systems and
integration -- Physical device control -- Data model
for computerized numerical controllers -- Part 11:
Process data for milling. 2004

ISO 14649-111. Industrial automation systems and
integration -- Physical device control -- Data model
for computerized numerical controllers -- Part 111:
Tools for milling machines. 2003

Kramer, T. R., Proctor, F., Xu, X., and Michaloski, J. L.,
“Run-time interpretation of STEP-NC:
Implementation and performance”, International
Journal of Computer Integrated Manufacturing, Vol.
19, No. 6, 2006, pp 495-507

Liu, T., Wang, Y. & Fu, H., “The open architecture CNC
system HITCNC based on STEP-NC”, Proceedings of
the World Congress on Intelligent Control and
Automation (WCICA), 2006, pp 7983-7987

Michaloski, J., Birla, S., Weinert, G. & Yen, C. J.,
“Framework for component-based CNC machines”,
Proceedings of SPIE - The International Society for
Optical Engineering, 1998, pp 132-143

Michaloski, J. L., Soons, J. A. & Proctor, F. M.,
“Accessing the performance of model-based control in
a distributed machine tool control environment”,
ASME International Design Engineering Technical
Conferences (Salt Lake City, Utah, USA). 2004

Newman, S. T., Nassehi, A., Xu, X. W., Jr, R. S. U. R.,
Wang, L., Yusof, Y., Ali, L., Liu, R., Zheng, L.,
Kumar, S., Vichare, P. & Dhokia, V. “Interoperable
CNC for Global Manufacturing”, Flexible Automation

and Intelligent Manufacturing (FAIM2007)
(Philadelphia), 2007, pp 1-13

Proctor, F., Michaloski, J., Birla, S. & Weinert, G.,
“Analysis of behavioral requirements for component-
based machine controllers”, Proceedings of SPIE - The
International Society for Optical Engineering, 2001,
pp 10-18

Rober, S. J., and Shin, Y. C., "Modeling and control of
cnc machines using a PC-based open architecture
controller." Mechatronics, Vol. 5, No. 4, 1995, pp
401-420

RXTX Java Library (2008), Online:
http://users.frii.com/jarvi/rxtx/index.html, accessed
January, 2008

Suh, S. H., Chung, D. H., Lee, B. E., Cho, J. H., Cheon,
S. U., Hong, H. D., and Lee, H. S., “Developing an
integrated STEP-compliant CNC prototype”, Journal
of Manufacturing Systems, Vol. 21, No. 5, 2002, pp
350-362

Wang, S. H., Wang, Y. Z., Lu, H. & Han, Z. Y., “Design
of soft CNC system with a new open-architecture”,
Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS, Vol.10, No.2, 2004,
pp 200-204

Xu, X. W., Wang, H., Mao, J., Newman, S. T., Kramer,
T. R., Proctor, F. M., and Michaloski, J. L., “STEP-
compliant NC research: The search for intelligent
CAD/CAPP/CAM/CNC integration”, International
Journal of Production Research, Vol. 43, No. 17,
2005, pp 3703-3743

Xu, X. W., and Newman, S. T., “Making CNC machine
tools more open, interoperable and intelligent - A
review of the technologies”, Computers in Industry,
Vol. 57, No. 2, 2006, pp 141-152

Zhang, C., Wang, H., and Wang, J., "An USB-based
software CNC system." Journal of Materials
Processing Technology, 139(1-3 SPEC), 2003, pp
286-290

Zoilt, A., Strasser, T., Hall, K., Staron, R., Surender, C.
& Favre-Bulle, B., “The past, present, and future of
IEC 61499.” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
2007

http://www.osaca.org/

