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Abstract. Quadrotor has emerged as a popular testbed for Unmanned Aerial Vehicle (UAV) research due 

to its simplicity in construction and maintenance, and its vertical take-off, landing and hovering capabilities. 

It is a flying rotorcraft that has four lift-generating propellers; two of the propellers rotate clockwise and the 

other two rotate counter-clockwise. This paper presents modeling and system identification for auto-

stabilization of a quadrotor system through the implementation of Extended Kalman Filter (EKF). EKF has 

known to be typical estimation technique used to estimate the state vectors and parameters of nonlinear 

dynamical systems. In this paper, two main processes are highlighted; dynamic modeling of the quadrotor 

and the implementation of EKF algorithms. The aim is to obtain a more accurate dynamic model by identify 

and estimate the needed parameters for the quadrotor. The obtained results demonstrate the performances of 

EKF based on the flight test applied to the quadrotor system. 
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1. Introduction 

In general, Kalman Filter (KF) was first developed in 1960, and since then it has been a topic of 

extensive research with many applications.  A wide range of variations of the original filter have been 

developed and some of the most common applications are in the area of autonomous or assisted navigation, 

object tracking or even econometric applications [1][3]. The application of KF to nonlinear systems can be 

difficult. Thus, the work was extended to the most common approach, the extended Kalman Filter (EKF), 

which linearizes the nonlinear model so that the traditional linear KF can be applied [2][4].  

In this research, the testbed used is a four-rotor Unmanned Air Vehicle (UAV), known as quadrotor.  A 

quadrotor is referred to as a small agile vehicle, which has four rotors located at the front, rear, left, and right 

ends of a cross frame. It requires no cyclic or collective pitch. Quadrotor can be highly maneuverable, and 

has the potential to hover, take off, fly and land in small areas. It is mechanically simple and is controlled by 

only changing the speed of rotation of the four rotors.  

 
Fig. 1: Quadrotor Flying-robot 

As illustrated in Fig. 1, the quadrotor used as the testbed of this study is a modified commercially 

available Remote Controlled (R/C) quadrotor. However, its electronics were replaced with our own 

developed on-board components. It consists of a flight stabilizer sensor, which is a six degree of freedom 

Inertial Measurement Unit (IMU), an ultrasonic sensor, a transducer and a microcontroller. The IMU 

consists of three analog gyros and three analog accelerometers, and is used to directly measure the Euler 

angles and the angular rates for x, y, z axes, respectively. The test data obtained from the running flight test 

are then used in the EKF algorithm to provide accurate aerodynamic parameters. 
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The procedure started by running the model with a set of flight modes; take off, hover and landing in an 

indoor structured environment. Then, data was acquired initially from trim conditions, and ended with 

treating the output data using EKF using MATLAB. This paper is organized as follows. Section II presents 

quadrotor dynamic modeling. Section III discusses the system identification techniques, the implementation 

of EKF and applied to the quadrotor. This section also analyzes the results obtained, in form of values and 

graphs. Section IV concludes the paper. 

2. Quadrotor Dynamic Modeling 

Two frames of reference have been used in the modeling the quadrotor. These are the earth inertial frame 

(denoted by subscript I) and the body-fixed frame (denoted by subscript B). The nonlinear dynamics of the 

vehicle are described by sets of equations of motion that are derived based on the Newton-Euler formalism. 

The free body diagram of the quadrotor is shown in Fig. 2 where each rotor produces a lift force and moment. 

 
Fig. 2: Quadrotor inertial and body frame. 

 The assumption used for dynamic modeling as 

stated in [6][8] 

1. The structure of quadrotor is rigid and 

symmetrical. 

2. The centre of mass of quadrotor coincides 

with the origin of body frame, B. 

3. The propellers are rigid in plane and the pitch 

is fixed. 

2.1. Equations of motion 

The first set of differential equations of motion that describes the acceleration of the quadrotor can be 

written as:   

                                                                Λ�� = ��� , 	� , 
��� 

                   Λ
� = ��� 	�-�cϕsθsψ-sϕcψ�-�cϕsθsψ-sϕcψ�g-�cϕcθ� �																																																																								(1)	
where c and s denote the cosine and sine, respectively, φ, θ and ψ are the roll, pitch and yaw angle in the body 

frame, respectively, g is the gravitational acceleration (9.8 m/s
2
), m is the total mass of the quadrotor; x, y and 

z are the x, y, z position of the vehicle and u1 is the full throttle. 

While, the second set of the equations of motion is obtained by considering the angular momentum balance 

equation in body frame. Considering four kinematics movements for quadrotor which are full throttle 

movement (u1), roll movement (u2), pitch movement (u3), and yaw movement (u4) as the input variables in 

real application, the artificial input variables can be defined as follows: [7] 

 �� = �� �! + !! +  #! +  $!�                                                       (2)  

       								�! = �� #! −  $!�                                                                (3) 

      �# = �� �! −  !!�                                                                            (4) 

 �$ = &� �! + !! −  #! −  $!�                                                     (5)       

where  �,  !,  #,  $ are the angular speed for rotor 1, 2, 3 and 4, respectively, b is the thrust factor and d is 

the drag factor which are defined based on the results generated through force lift test done prior to flight test.  

 Full throttle movement is provided by increasing or decreasing the velocity of all rotors by the same 

amount. For roll movement, along the x-axis of the body frame, the angular velocity of rotor (2) is increased 

and the angular velocity of rotor (4) is decreased while keeping the whole thrust constant. Similarly, the 

angular velocity of rotor (3) is increased and the angular velocity of rotor (1) is decreased to produce a pitch 



movement along y-axis of the body frame and for yawing movement, along z-axis of the body frame, the 

velocity of rotors (1,3) are increased and decreased the velocity of rotors (2,4).  

The second set of differential equation is as follows: [8] Λ�'� = ()� , *� , +� ,� 

        Λ�-
 =
./
//
0*1+1 23453637 8 − 3937 *1:; + <37 �!)1+1 23653734 8 − 3934 )1:; + <34 �#*1)1 23753436 8 + <36 �$ =>

>>
?
                                                    (6) 

where :;	is the gyroscopic effect. 

2.2. Quadrotor parameter 

Table I illustrates quadrotor parameters calculated and measured from the testbed used for this paper.  
TABLE I.  QUADROTOR PARAMETERS 

Parameters Value Unit Remark 

m 0.65 kg Mass of quadrotor 

L 0.165 m Length from motor to motor 

b 2.107 x 10
-5

 kg.m
2
 Lift (Thrust) factor 

d 4.566 x 10
-7

 kg.m
2
 Drag factor 

3. Extended Kalman Filter (EKF) 

In general, EKF is referring to a Kalman filter that employs linearization at each time step to approximate the 

nonlinearities. EKF approximates the current mean and covariance using the first order approximation of the 

system dynamics. The EKF time update (prediction stage) is described as follows [1][2][5]

For the estimated state: 

    XAB- = f�XAB-�, UB-�, 0�                              (7)            

For the error covariance: 
   PB5 = ABPB5�ABH +WBQB5�WBH             (8)  

where A, and W is Jacobian matrix of partial derivatives of function f with respect to the x and w, 

respectively. 

                K�L,M� = NO�L�NPQ�M� �RST5�, UT5�, 0�                      (9)                V�L,M� = NO�L�NW�M� �RST5�, UT5�, 0�             (10) 

While the EKF measurement update (correction stage) is described as follows. For the Kalman Gain, Kk: 

   XT = YT5ZT�(ZTYT5ZT� + [T\T[T�,5�                                      (11) 

where H, and V are the Jacobian matrix of partial derivatives of function h with respect to the x and v, 

respectively. 

   Z�L,M� = N]�L�NP�M� �R̂, 0� , [�L,M� = N]�L�N_�M� �R̂, 0�                                         (12) 

For the estimation update with measurement zk: 

 		R̀a = R̀a− + Xa�
a−ℎ�R̀a−, 0��		           (13) 

For the error covariance update, Pk: 

    YT = c − �XTZT5��YT5              (14)

Basically, identification of parameters through filtering approach transformed the parameter estimation 

problem into a state estimation problem. It employs a continuous estimation model for prediction and the 

measurements that are recorded at discrete time step for the correction. The system dynamic of the quadrotor 

is represented in the continuous state space equation along with the measurement model as follows [8]. 

 R1 = KR + dU + eV 	 	 																																				 							(15)		 f = gR +h[	 	 	 																																		                    (16)	
 



Since the state vector of the quadrotor: 

 X = (x, y, z, x1 , y1 , z1 , ϕ, θ, ψ, ϕ1 , θ1 , ψ1 ,H			 																																																											(17) 

Thus, the quadrotor system equations with state and input matrices are given by equations (18-19).  

For the measurement matrix, it involved the same variables as in state space equations, which are:  R1 = �R$, Ro, Rp, Λ�� , R�q, R��, R�!, Λ�'���                                                                   (18) 

Equation (19) can be rewritten in a form of equation (15) and (16) with L and M equal to zero.  

			R1 = �0#r#0#r#0#r#0#r#
1#r#e�0#r#0#r#

0#r#0#r#0#r#0#r#
0#r#0#r#1#r#e! � �R� + �

0#r�e#0#r�0#r�
0#r#0#r#0#r#e$ � t

���!�#�$u                                                  (19) 

 where:    e� =	 v0 0 00 0 00 0 :w ,    e! =	 .//
/0 0 +1 23453637 8 − 3937 :; 0+1 23653734 8 − 3934 :; 0 0)1 23753436 8 																	0 0=>

>>
?
,  e# = .//

/05�xyz{x|}zyz|�~5�xyz{z|5zyx|�~5�xyx{�~ =>>
>?
      and   e$ =	 � <37 <3� �36� 

Therefore, the measurement matrix is derived as: 

      f~��� = &��:����	��������, 	, 
, �1 , 	1 , 
1 , ∅, *, +, ∅1 , *1 , +1 	�  
In order to run the Kalman filter, a set of data is obtained; these measurements are compared with the 

filter state predictions. Then, the differences are used by EKF to converge and correct the results. For the 

measurement model, the responds of quadrotor for a sequence of flight missions, starting from low speed 

motor rotation to high speed motor rotation, followed by take-off, hover and landing are analyzed. The time 

taken for a full flight test is 90 seconds. The sampling rate for both algorithms is 10 Hz which gives around 

900 iterations. In the implementation of EKF, the filter has been tuned with adequate measurement (R matrix) 

and process (Q matrix) noise covariance.  

 
Fig. 3(a):   EKF state filtering; measured and estimated for velocity 

at x, y, and z-axes respectively. 

 

 
Fig. 3(b):   Error computed for velocity at x, y, and z-axes 

respectively. 

 
Fig. 4(a):   EKF state filtering; measured and estimated for angular 

velocity at x, y, and z-axes respectively. 

 

Fig. 4(b):   Error computed for angular velocity at x, y, and z-axes. 
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The state filtering performance for EKF is shown in Figure 3 and Figure 4. The solid line represents the 

measured data while the dotted line represents the state estimation. Figure 3(a) and Figure 3(b) show the 

EKF state filtering and error computed for velocity while Figure 4(a) and Figure 4(b) show the state filtering 

and error computed for angular velocity at x, y, and z-axes, respectively. From the illustrations, it can be seen 

that the estimation results have converged starting from the first step over an accurate time history. The 

filtering results show that the EKF manages to organize the noisy data flow coming from the sensor, as the 

noise level has been significantly reduced and this can be verified through filtering error covariance and 

Mean Square Error (MSE) computations. The value for error covariance and MSE for each estimations of 

velocities and angular velocities at x, y, and z axes computed by EKF is illustrated in Table II. The error 

covariance after filtering or also known as the estimations error is referring to the difference between the 

measured and the estimated values of linear velocities and angular velocities at x, y, and z axes, respectively. 

On the other hand, MSE measures the average of the squares of the difference between values implied by an 

estimator and true values of the quantity being measured.  

Based on Table II, the error of estimation and MSE for velocities and angular velocities at x, y, and z 

axes computed by EKF algorithm are considerably small, it can be concluded that the EKF output matches 

well with the measured output and the measured noises are well filtered by EKF.  

 
TABLE II.  ERROR COVARIANCE AND MSE FOR VELOCITIES AND ANGULAR VELOCITIES BY EKF 

Parameters Error Covariance MSE Parameters Error Covariance MSE 

Velocity at x [m/s] 0.0060 0.0779 Angular velocity at x [rad/s] 0.0005 0.0220 

Velocity at y [m/s] 0.0048 0.0695 Angular velocity at y [rad/s] 0.0004 0.0204 

Velocity at z [m/s] 0.1367 0.3697 Angular velocity at z [rad/s] 0.0019 0.0433 

4. Conclusions 

In this paper, the performances of EKF for system identification purposes applied on a quadrotor have 

been discussed. A continuous estimation model with additive noises represented by the state vector is filtered 

using a first order approximation for propagation of the covariance matrix. In conclusion, our results show 

that the performance of EKF allows it to stay as the practical tool for state identification. EKF returns quality 

results and is less costly for computational demand. It has proven itself to be one of useful tools in the field 

of real-time system identification.  
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