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ABSTRACT 

 

In structural dynamic systems, there is inevitable uncertainty in the input power 

from a source to a receiver. Apart from the non-deterministic properties of the 

vibration source and receiver, there is also uncertainty in the excitation. This 

comes from the uncertainty of the forcing location on the receiver, its relative 

phase, its amplitude distribution at multiple contact points and also the spatial 

separation of these points. Moreover, the uncertainty becomes more significant as 

only translational force is considered while the moment excitation is often 

excluded in the calculation. This paper investigates the effect of moment 

excitation on the uncertainty in the vibration input power to a structure. 

Quantification of the uncertainty using possibilistic and probabilistic approaches 

are made. These provide the maximum and minimum bounds and the statistics of 

the input power, respectively. Expressions for the bounds, mean and variance are 

presented as well as the frequency band-averaged results.  

 

Keywords: moment excitation; vibration input power; uncertainty; mean; 

variance.   

 

 

INTRODUCTION 

 

The treatment of structure-borne sound sources remains a challenging problem. 

Structural excitation to a building floor, for example, by active components like 

pumps, compressors, fans and motors is an important mechanism of sound 

generation. To obtain an accurate prediction of the injected input power from 

such sources, both the source and the receiver must firstly be characterized 

(Petersson and Gibbs 2000). However in practical application, the variability of 

source and receiver properties including the lack of knowledge in the excitation 

force creates uncertainty in the input power.  
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Several works have been proposed for source characterization (Petersson and 

Plunt 1982, Mondot and Petersson 1987) and receiver characterization (Langley 

and Brown 2004, Langley and Cotoni 2004). With respect to the excitation force, 

the problem is exacerbated because in practice there will usually be multiple 

contact points (typically four) and 6 degrees of freedom (3 translation and 3 

rotation) at each, and that force and moment components at each contact point 

will contribute to the total input power. Therefore to assess the uncertainty, some 

quantification of the bounds, mean and variance of the input power is of interest. 

 This paper focuses only on the uncertainty in the excitation with the source 

and receiver assumed to be deterministic. The source may have multiple contact 

points. Here, the moments are included in the excitation.  The uncertainty in input 

power due to the excitation phase, its location and separation of the contact points 

is investigated. First some general comments are made. Broadband excitation is 

described, although only time-harmonic excitation is considered here with 

frequency averages subsequently being taken. The input power from multiple 

point forces to an infinite plate is examined to give an insight into the physical 

mechanisms involved. In practice, the receiver will have modes, although the 

modal overlap might be high. The input power to a finite plate is then analysed, 

where now the forcing location at the receiver becomes important. The mean and 

the variance of the input power averaged over force positions are investigated. 

The results are also presented in frequency-band averages.    

 

 

UNCERTAINTY QUANTIFIQATION  

 

Two approaches are employed to describe the uncertainty in the input power, 

namely possibilistic and probabilistic approaches (Lars 2008). The possibilistic 

approach gives an interval description of the input power, which lies between 

lower and upper bounds, i.e. 

 

[ ]ininin PPP ∈                                                 (1) 

 

where inP and inP  are the minimum and maximum bounds and inP  is the interval 

variable. The probabilistic approach gives information about the likelihood and 

probability of the input power. The variation is specified by a probability density 

function ∏ . If )(z∏  is a continuous function of some variable z, the mean µ  or 

the expected value of the input power and its variance 
2σ are defined by 

 

∫ ∏=
z

inP dzzzP
in

)()(µ ,      ∫ −∏=
z

PinP inin
dzzzP

222
)()( µσ           (2) 

 

INPUT POWER  

 

Consider a vibrating source connected through a single or N contact points to a 
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receiver. For a time-harmonic excitation at frequency ω , the input power is 

expressed as a function of mobility (or impedance) of source and receiver 

(Cremer et al. 2005). This requires knowledge of both source and receiver 

mobilities and the so-called ‘blocked force’ or ‘free velocity’ of the source. In 

general, the mobilities are matrices and the blocked forces or the free velocities 

are vectors, with the elements relating to the various translational and rotational 

degrees of freedoms (DOFs) at the contact points. In this paper, however, the 

analysis is made by assuming that the force excitation is known and the source 

mobility is assumed to be much smaller than that of the receiver. The input power 

is therefore given by 

{ }FYF ~~~*

2
1ℜ=inP                                                 (3) 

where ]...[
~

21

21
Nj

N

jj
eFeFeF

φφφ=F  is the vector of the complex amplitude of 

the time-harmonic forces and where * denotes the conjugate transpose and ℜ  

denotes the real component. The i-th force has a real magnitude iF  and phase 

iφ . The mobilities of the receiver are represented by a NN ×  matrix Y
~

. 

 Figure 1 illustrates the components of excitation assumed to act on a structure. 

The response at the contact point is a function of point mobilities, transfer 

mobilities for different axes and also the cross mobilities for different 

components. Therefore, there will be a 66×  mobility matrix for each excitation 

point. The problem becomes more complicated for multiple contact points. For N 

contact points, the interaction between components will increase the size of the 

system matrix to NN 66 × . 

 

xF
xM

yF
yM

zF

zM

 
 

FIGURE 1. Six components of point excitations. 
 

In this paper, however, the problem is simplified by neglecting the in-plane 

excitations, i.e. yx FF , and zM . Therefore the mobility matrix is reduced to a 

33×  matrix for a single contact point. In general, the input power due to a 

combined point force and moment excitation can be written as 

 

    { } { } { } { }( )2*2

2
1 |

~
|

~~~~
2|

~
|

~
MYFMYFYP MvMvF

in

θ&ℜ+ℜℜ+ℜ=              (4)                                    

 

where 
vFY

~
and 

MY θ&~
are the point force and point moment mobilities and 

vMY
~

is 

the cross-mobilitiy from moment to translation and for an infinite plate 
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{ } .0
~

=ℜ vMY  Thus in matrix form, the power can be expressed as in Equation (3) 

where 
T

yxx MMF ][
~
=F is the vector of the force and moments. With 

inclusion of moment excitation, the mobility matrix for a single contact point is 

given by 
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where Y
~

is symmetric. 

 

MAGNITUDE OF MOMENT 

 
The relative contribution to the input power depends of course on the magnitude 

of the excitation. Force and moment cannot be compared directly as they have 

different units. In a practical situation, they would also depend on the nature of 

the force generation mechanism in the source. The installation condition has also 

to be considered. The effects of moment excitation for a vibrating machine 

installed on soft support at the contact points would be different to those if the 

machine were bolted tightly to the receiver structure. Thus the problem remains 

of qualifying the relative effects of force and moment. 

 

Single contact point 

 

The relative importance of force and moment in exciting a structure can be 

compared only in terms of their input power. However, to calculate the power, 

not only the mobilities should be known, but also the magnitudes and the phases 

of the excitation components (see Equation (4)). 

 The magnitude of moments, 1
~ φj

MeM = and the force, 2
~ φj

FeF = at the 

contact point are related by an effective lever arm α by 

 

    FM α=                                                          (6)                                    

 

where ∞<<α0 . This indicates that if α  is very small, the structure is excited 

mainly by force, while if α  is very large the structure is driven mainly by a 

moment. However, for convenience, a non-dimensional unit is prefered to scale 

the relative input power. From Equation (4), the total input powers, FP  and MP , 

due to a force and a moment are   

 

{ } { } { } { } 2

2
1*2

2
1 |

~
|

~~~~
2|

~
|

~
MYFMYFYPPP MvMvF

MFin
θ&ℜ+ℜℜ+ℜ=+=         (7)                                    
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For an infinite plate, the real part of the point mobilities are given by 

 

    { } { }
B

Y
Bk

Y MvF

8

~
,

8

~
2

ωω θ =ℜ=ℜ
&

                             (8)                                    

 

where ω is the frequency, B is the plate bending stiffness and k is the structural 

wavenumber. The cross mobility is zero, { } 0
~

=ℜ vMY . Consequently, the relative 

phase between the force and the moment is irrelevant. From Equations (6), (7) 

and (8), the input power from moment excitation can be scalled in terms of the 

input power from the force by a non-dimensional unit  αk  and is expressed as 
 

    FM PkP 2)( α=                                               (9)                                    

 

Equation (5) can be re-written as 

 

    ( ) Fin PkP 1)( 2 += α                                               (10)                                    

 

 For a finite plate receiver, the total input power is given as in Equation (7) 

where the phase difference between the force and moment becomes important. 

While the situation is now numerically complicated, Equation (10) can again be 

used to scale the individual contribution to the input power.  

 

Multiple contact points 

 

Figure 2 shows a diagram of a translational force F which generates moment M 

that can be resolved into moments xM  and yM  components. The moments can 

be expressed as 

 

    )cos(),sin( δβδβ FLMFLM yx −==                             (11)                                    

 

where L is the lever arm, or the distance from the line of action F to the point 

attached to the structure, δ  is the angle between the lever arm and the positive x-

axis and β  is a dimensionless scaling factor.  

 Equations (6) and (11) can be used to define the relation between force and 

moment for multiple contact points. Figure 3 shows the forces and moments for a 

typical four point contact source, with the points having a rectangular distribution, 

where 
2
2

2
1

2
3 LLL += . The reference moment at any contact point might then be 

considered as a sum of contributions from forces at all the contact points. In this 

situation, the moment about the x-axis can thus be expressed in the form  
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FIGURE 2. The lever arm of the moment and force. 
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and the moment about the y-axis are 
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FIGURE 3. The moment and force directions at source-receiver interface with 

four contact points. 
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The subsequent sections discuss the results of the effect of moment excitation on 

the input power to infinite and finite plates particularly for the multiple point 

excitation. The force and moment mobilities for both infinite and finite plates can 

be found in (Brennan and Gardonio, 2004). 

 

 

RESULTS AND DISCUSSION 
Single point excitation 

 

Figure 4 shows the normalised total input power (Equation (10)) to an infinite 

plate for a single contact point. It can be seen that the power from force excitation 

is constant with frequency while the power from moment excitation is increasing 

with frequency. Both powers intersect at 1=αk . For 1<αk , the power is 

dominated by force excitation and for 1>αk , the power is dominated by moment 

excitation. 

 Figure 5 shows the normalised input power against  αk  for a single contact 
point assuming in-phase force and moment. The plate is an aluminium plate 

having dimensions 003.05.065.0 ××  m. The result in Figure 5(a) shows the 

increase of the input power due to moment contibution at 25.0>αk  (see also 

Figure 4). For the case where the excitation is near to the plate edge in Figure 

5(b), the total power is significantly less at low αk , because the point mobility 

for force excitation (which dominates at low frequencies, 1<<αk ) is smaller near 

the edge. However, when 2.0>αk , the input power is the same as that when the 

excitation position is near to the centre of the plate due to the increasing  power 

from the moment so that it compensates partly for the reducing power from the 

force.           
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FIGURE 4. The normalised input power from force (         ) and moment (       ) 

excitations at a single contact point and the total power (    ). 
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FIGURE 5. The normalised input power of a finite plate subjected to force and 

moment excitations at a single contact point ((a) the power with (      ) and 

without (       ) moment and (b) the total power for the contact point around the 

edge (      ) and middle (     ) of the plate: 005.0=α  m, 1.0=η ). 

 

Figure 6 shows the normalised input power for various forcing locations on the 

plate. The increase in the mean power due to the contribution of moment 

excitation can be seen roughly above 35.0=αk . 

10
-1

10
0

10
-3

10
-2

10
-1

10
0

10
1

10
2

kα

N
o
rm

a
li
se
d
 p
o
w
e
r

 
 

FIGURE 6. The normalised input power (light dark) of a finite plate subjected to 

force and moment excitations at single contact point for various possible forcing 

locations:  —– mean and , – · – mean±standard ( 1.0=η , 005.0=α  m). 
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Multiple point excitations 

 

As an example, for two contact points there are fifteen relative phases. Assume 

the distance L between the two points is parallel with x-axis ( 0=δ ) so that some 

transfer moment mobilities about x-axis become zero. The transfer moment 

mobilities are given in Appendix. In this case, the total input power for the case 

of two contact points is given by 
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                             (14)                                    

where pY denotes the point mobility (the same contact point) and tY  denotes the 

transfer mobility (different contact point). The phase ϕ  denotes the relative phase 

between the two components at the same or different contact points, for example 

4ϕ  is the relative phase between the moment about the y-axis and the force at 

different points. In Equation (14), it has been noted that 
F

t

vM

t
yy YY

θ&~~
= . Due to the 

complexity of this expression, it is difficult to determine the bounds of input 

power analytically. However for simplicity, if it is assumed that all the 

components are in-phase, so that 0=iϕ  for 5,4,3,2,1=i . By also assuming 

FFF == 21 , 21 αα =  and following the same method as in Equations (12) and 

(13) for 22× matrix, thus FMM xx α== 2,1,   and FLM y )(1, βα +=  and 

FLM y )(1, βα −= . The asymptotic forms of the transfer mobility in Equation 

(14) for this case can be expressed as  
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By substituting Equation (15) into Equation (14) and setting the cos and sin 

terms equal to unity, the maximum and minimum bounds of the input power 

normalised with respect to the input power from translational force ( FP ) for in-

phase excitation are found to be 
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For the case when 1<<αk  and 1<<Lkβ , Equation (16) reduces to 

 

  
kLP

P

F

in

π
2

1
2

±=                                              (17)                                    

 

 i.e. where the moment excitation is neglected (see again Figure (4)). 

 Assuming random phases with equal probability in Equation (14), the mean 

and the variance of the input power to an infinite plate receiver through N contact 

points can, in general, be expressed as 
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where i and k indicate the i-th and k-th contact points, respectively. 

 The bounds of the normalised standard deviation can be obtained by 

substituting Equation (15) into Equation (19). After algebraic manipulation, it can 

be approximated by 
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Again, for 1<<αk  and 1<<Lkβ , this yields the standard deviation for force 

excitation 

 

  
kLPF π

σ 2

2
≈                                                      (22)                                    

 

 Figure 6 shows the mean input power and its standard deviation for an infinite 

plate with two contact points. It can be seen that the input power tends to increase 

at high frequencies due to contribution of the moment excitations. 
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FIGURE 5. The normalised input power of a finite plate subjected to two 

harmonic unit point forces and two harmonic moments:   – – mean,   — (thick 

line) max/min bounds; Equation (14),  – · – mean±standard deviation,           

—   mean±bounds of standard deviation; Equation (18)  

( 003.0=α  m, 003.0=β , 1.0=η ). 

 

Again for a finite plate, the relative phases due to coupling between forces and 

moments are of interest for multiple contact points. The mean power, assuming 

the relative phases between the excitations are equally probable, i.e. the same as 

that in Equation (18) for an infinite plate. However, a force will produce a 

rotation and a moment will produce a displacement at the same point. Therefore 

the variance is given by  
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For four contact points, the mobility matrices are 1212×  times. Using Equations 

(18) and (22), Figure 6 shows the mean and standard deviation of the input power 

for damping loss factor 05.0=η . The spatial separation of the contact points is 

again assumed to form a rectangular shape and L is the length of the diagonal. 

The results agree well with those from the infinite plate above 10=kL . Below 

this, the agreement deteriorates due to small damping. This is clearly shown in 
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the relative standard deviation, µσσ /=r , plotted in Figure 7. However, it can 

be seen that the numerical result has a good agreement with that from the relative 

standard deviation from the mean and standard deviation of the input power of a 

rectangular plate subjected to a point force averaged over all possible forcing 

locations and frequency bands given by  

 

  
ηωπ

σ

dn
r

1
=                                                      (23)                                    

 

where dn  is the modal density of the plate.  
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FIGURE 6. The normalised input power of a finite plate subjected to force and 

moment excitation at four contact points averaged over various possible forcing 

locations and frequency bands:  mean (—– numerical calculation,  – – infinite 

plate) and mean±standard deviation (···· numerical calculation, – · – infinite plate) 

( 14.0=L  m, 05.0=η , 005.0=α  m, 005.0=β ). 

 
CONCLUSIONS 

 
The relative effect of moment excitation can be expressed in terms of a force and 

a distance corresponding to a characteristic of the source. It can also be scalled as 

a function of the input power of the force and the structural wavenumber. This 

effect tends to increase as frequency increases. The expressions for the bounds, 

mean and variance of the input power have also been presented. The contribution 

to the total input power can be predicted using the simple expression of the 

relative standard deviation for the force. 
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FIGURE 7. The relative standard deviation of the input power:     

— numerical calculation,  – · – infinite plate,  – – Equation (23)  
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