
Development of Real-Time Virtual Environment with
Hierarchical Construction

Hamzah Asyrani Sulaiman
GRAVS Lab

Faculty of Electronic and Computer
Engineering

Universiti Teknikal Malaysia Melaka
+6065552150

asyrani@utem.edu.my

Abdullah Bade
GRAVS Lab

School of Science and Technology
Universiti Malaysia Sabah

+6088320000

abb@ums.edu.my

Mohd Harun Abdullah
School of Science and Technology

Universiti Malaysia Sabah
+6088320000

harun@ums.edu.my

ABSTRACT
The development of real-time virtual environment is always a
fundamental task for research to come out with a good testing
procedure. Regardless any software application that has been used
to develop the virtual environment, maintaining real-time aspect
such as physic simulation, fluid simulation, collision detection,
and others is definitely important. Numerous attempts has been
introduced in order to develop nearly perfect virtual environment
but at the end the solution only cater for some specific settings
that must be implemented before we properly visualize the virtual
environment. In this paper, we consider few elements that can be
used to visualize their virtual environment and perhaps becoming
a common visualization procedure to differentiate and compare
with others.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically based modeling; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation;

General Terms
Algorithms, Design, Experimentation, Theory.

Keywords
Virtual environment, Simulation, Visualization, Bounding-volume
Hierarchies

1. INTRODUCTION
In three-dimensional (3D) world, the number of objects used to
represent the real world is varies according to their complexity of
the application [1-6]. Some researchers might to develop for
example an urban simulation that consists of few buildings with
low polygon counts for each object while some wants to properly
visualize the urban simulation with high detailed objects that the
number of polygon for each object is high. The application itself
determine whether the researcher or the designer needs to use high
definition models or not in their design.

For each 3D object, the number of polygon, which is their
primitives or triangles, is the key point to define whether the
object is complex or not. By taken an example of 3D Stanford
Bunny model, it has variety of polygon counts starting from the
hundreds of polygons to the tens of thousands of polygons. The
complexity of the 3D object is determined by their polygon count.
When the same 3D object but with the different complexity is to
be compared to each other, the highest polygon counts is the one
that looks nearly fine with the real world object. However, in term
of the resources used to visualize the same object with the
different complexity, the low polygon counts is definitely the one
that use low resources compared to the high polygon counts.
Thus, the researcher and the designer must be able to comprehend
with this matter in order to use virtual environment for their
testing procedure depending on what type of application that they
want to use. At one hand, the researcher might just want to test the
fundamental testing of collision detection between rigid bodies
model. Thus, different types of object complexity are used in
order to analyze the speed and the accuracy of the detection. On
the other hand, the designer might want to develop a virtual
tourism application where user can navigate and walkthrough the
scene. Hence, high detailed objects need to be used along with a
culling system to cull an object that located far from the current
user position. This is to minimize the amount of the resources
used to visualize high detailed virtual environment. Los Angeles
city by UCLA [7], Virtual Dublin [4] in 2003 to interactively
visualize the urban area of Dublin, Ireland, and Virtual Nicosia
developed by Dikaiakou et al. [8] in 2003 are examples of 3D
virtual environments that have been setup for commercialization
and research purpose. In this case however, we cannot properly
measure the complexity of the whole virtual environment as each
object in the virtual environment might vary according to the
complexity of the application itself. Some object might have high
polygon counts for example human, animals, trees while building
might just have only low polygon count as they just use a texture
to cover the 3D object.

In this paper, we discussed few elements that need to be
considered to visualize real-time virtual environment with a
normal frame rates per second (FPS), which is 30 FPS to 60 FPS.
Section II described the elements in virtual environment, and
section III discussed the development and step by step for good
virtual environment. Section IV shows our proposed testing
procedure for any 3D virtual environment and section V
concluded our discussion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICUIMC’12, February 20–22, 2012, Kuala Lumpur, Malaysia.
Copyright 2012 ACM 978-1-4503-1172-4…$10.00.

2. VIRTUAL ENVIRONMENTS
2.1 Object Placement and Coordinate System
In virtual environment world, the coordinates system might defer
than the real world. The virtual environment itself is just a very
huge box containing many types of objects with different
complexity and behavior. Usually, the researcher or the designer
needs to propose specific size of terrain before the object needs to
be placed. The terrain itself must be unique in order to realize it in
virtual environment application. Some might develop it by using a
program that could randomly generate the virtual environment
terrain.

Object placement is done when the entire object has been properly
designed using 3D editor such as 3D Studio Max, Autodesk
Maya, or Google SketchUp software. Then, all the objects are
copied into certain folder in order to let the program recognize the
folder that it needs to read. The problem might occur where object
placement required the user to be able to create a program that
match the coordinates system that has been created by the 3D
tools. Thus, it is best to confirm that our program has the same
coordinate system with the 3D tools or otherwise we need to
program it using our own coordinates system. It totally depends
on how we are going to place every object in the virtual
environment by integrating the object one by one or just load all
the objects as a single entity. The programmer can do this process
manually although it might time consuming for each object to be
properly loaded into environment. It is acceptable practice to
include all the static objects into one object (save the object as one
entity using 3D editor) to save time.

The coordinates system varies for each type of virtual
environment but it still use x, y and z coordinate system. Although
the 3D editor define the distance between point A to point B with
different distance when the object is loaded into virtual
environment, we still can try to resemble the coordinate just like
the one that we are going to use. For example, when we developed
a building that 10 meters high, our 3D program that use to
visualize the virtual environment cannot 100% visualize the same
size even though we have properly set the parameters. The
solution is to create a grid system in our “box” world which are
100 units high, 100 unit widths, and 100 units long and make it
every unit as 1 meter x 1 meter. Then we can successfully
integrate our building into the environment and resize it according
to our specification. The same principle applies for each object
that we have developed.

2.2 Texture Mapping
Texture mapping is one of important elements for researcher or
designer to develop a well-designed 3D virtual environment.
Instead of using library based coloring system provided for
example, the OpenGL, the researcher or the designer has used
textures in order to give few objects in the virtual environment
feels just like the real world. Large amounts of researches have
been conducted in just texture mapping area [9-12].

Given an example of a simple rectangle box, the process of giving
the surface of each rectangle shape (six of them) with a few colors
or texture is called texture mapping. By applying texture to the
surface, we will create an astonishing object that looks like the
real world entity. Each vertex of the box surface is assigned with a
texture coordinate system either by manually added by the
assigner or automatically define by the texture function in the 3D
loading program.

One of the techniques for applying texture mapping is
multitexturing. Multitexturing can be used to put more than one
texture map into the object. Another technique is called bump
mapping, which allows the texture to follow the 3D program
lighting systems. It is useful for good appearance such as tree bark
or rough concrete where it takes the lighting into details. It is
popular technique used in computer and console game.

2.3 Lighting and Shadowing
Another important element of creating virtual environment is to
have good lighting and shadowing system for the application.
Although it depends on the quality of the texture that has been
mapped into the surface of each type of object in virtual
environment, a mechanism to handle the lighting system in order
to build the aesthetic quality of the graphics themselves is useful.
In 3D virtual environment, lighting can be categorized into few
types. The first one is the ambient light, it is a light that comes
from all over the place and this is not happening in the real world.
Some researchers might just want to add simple ambient lighting
into their system by assuming the object get the light source in all
direction.

Second type is a diffuse lighting system. It is a normal lighting
system where we have only one source (for example: the Sun) and
thus the object might have some shadow at the back of the
opposite surface that facing the sun. The third type of the lighting
is specular lighting system. It is more realistic where we have a
source of lighting, and then there is some kind of mirror at the
surface of the object that bounce off to some particular direction.
It looks like polished stuff such as polished metals or glasses. The
last one is the emission type lighting, where the object itself
emitted the lighting and it is equally in all directions. All this type
of lighting is refer from the OpenGL basic lighting system.

2.4 Level of Detail and Culling System
In virtual environment world that has high detailed objects and
massive scale simulation, the designer or the researcher used a
technique so called Level of Detail (LOD) to decrease the
complexity of the far away object from the viewer current position
[13-16]. Given an example of large-scale virtual environment of a
big city, the position of the viewer might start at some point and at
the same time, the viewer cannot see the far away object with the
current position. By decreasing the object complexity using vertex
transformations, we can limit the object polygon counts for any
object that has different distance from the viewer. It is likely the
viewer will not notice the different of the object when moving fast
or in the far away position.

By working together with the culling system, we can cull away
the object that is currently located at the back of the viewer screen
eye or any object that located at the back of other objects. This
will burst the speed of the simulation and improved the FPS rate

2.5 Collision Detection
Given the properties of two or more objects in virtual
environment, in is vital to detect the potential of contacts point
when collision occurs. The mechanism in handling the collision
detection must be carefully designed to make sure the
interactiveness of the simulation. Collision detection mechanism
is essential for almost every simulation running in virtual
environment [17-20]. For example, in medical simulation, the
precise contact between the object and the human body must be

simulated correctly as we do not want to harm the human body. In
virtual surgeon for example, the colliding area between the scalpel
and the human bodies needs to use additional computational
resources. This is because the simulation needs to recalculate the
bounding area used to detect collision and create a new one. In
computer games, the speed of intersection plays important roles in
creating fast response collision detection during gameplay. Most
of computer games just use simple bounding box to detect
collision as it performs faster and does not require re-calculation
of bounding box. Hence, collision detection has widely used in
simulation of virtual environment, animation for realistic
environment and robotic where the contact point between object
and robot must be measured precisely [21-31].

3. VIRTUAL ENVIRONMENT WITH
BOUNDING-VOLUME HIERARCHIES
Virtual environments composed of many objects that could be
static or in motion, where each of objects may have thousands of
primitives. Testing object interference between those primitives
could become troublesome as pairwise intersection tests that need
to be performed is countless (which means here, huge) [35].
Hence, spatial data structures becoming one of the solution for
accelerating collision detection in massive environments [35].

Spatial data structure can be used in two ways [35]. First, they can
be used to reduce the pairwise test among static and moving
object in virtual environment. According to [35], for n objects
there are potentially collided pairs. Next structures searching can
be undergoing to reject most of these pairs [48]. Alternatively,
they can be used to reduce the pairwise test between two or more
primitives or objects with primitives. Both traditions can be built
in pre-processing step and are typically motionless.

4. BOUNDING-VOLUME HIERARCHIES
Bounding-Volume Hierarchies (BVH) is a hierarchical
representation of 3D object in virtual environments to reduce the
computational cost of in various applications such as culling
system and collision detection. BVH are simply a tree structure
that represents geometric models with specific bounding volumes.
It works like a tree that has a root (upper division), a group of
leafs (middle division) and a leaf (last division). Each node has it
bounding-volumes that cover the children node. The main idea of
BVH is to increase the level of the tree where it can create
secondary node consists of left and right node. Each node stores a
BV as a leaf node. Example of bounding-volume hierarchy is
shown in Figure 1.

BVH allows the intersection occurs without searching for non-
colliding pairs from the hierarchy tree. For example, given two
objects with their BVH, when root of the hierarchies do not
intersect, the calculation will not be performed for both objects.

However, when the root of both hierarchies intersects, it checks
for intersection between one root of the hierarchies’ tree and the
other children of objects hierarchies’ tree. In this case, it
recursively checks again whether there is intersection between
both objects at middle level until it found the correct intersection.

4.1 Bounding-Volume
Bounding-Volume (BV) is an important part of BVH
construction. Numerous BV have been developed in the past in
order to minimize the computational cost of performing collision
detection. Instead of using primitive-primitive checking between
intersected 3D objects, BV helps to speed up the process by
enclosing bunch of triangles into single BV before proceed with
collision checking. This is to reduce the possibility of eliminating
set of triangles that does not intersect.

At the present time, there are several famous BVs such as spheres
[32], Axis Aligned Bounding Box (AABB) [22, 33, 34], Oriented
Bounding Box (OBB) [17, 22, 35], Discrete Oriented Polytope (k-
DOP) [28], Oriented Convex Polyhedra [36], and hybrid
combination BV [20]. Most large scale 3D simulations used
bounding box because of the simplicity, require less storage, fast
response of collision, and easy to implement [37]. Figure 2
illustrates most commonly used bounding volume.

5. VIRTUAL ENVIONMENT CREATION
The construction of urban environment begins by using Google
SketchUp version 7.0 and Deep Exploration version 5.0 as tools to
draw and viewing 3D models. Various type of building is
developed using Google SketchUp not limiting the shape of
buildings. The objective is to develop an effective enough urban
environment to meet the main research objective of using
hierarchical representation to detect object interference in urban
simulation. Thus, the development intends to abandon few non-
important elements such as textures, lighting, and culling system.
The research just intends to test the capabilities of using BVH in
urban environment effectively. Urban environment is not
necessarily too large or too small (Figure 3). As long as the urban
environment meets the objective to become supporting tools to
proof the new optimization of BVH traversal algorithm.

Figure 2. Examples of common BVs as described in [36].

.

Figure 3. Urban Simulation creation.

.

Figure 1. The left hand side image shows a BVH with
Sphere BV while on the right hand side image, shows
unbalanced hierarchical form using binary type hierarchy.

.

5.1 Integration Spatial Object Median
Technique for Fast Construction of BVH
The implementation of BVH in Urban simulation starts by first
loading the corresponding 3DS file into OpenGL programming.
Then, the process begins by parsing parameters such as total
vertex, vertex points, total faces, and face points. When the urban
simulation successfully loaded into virtual environment, all
related parameters will be passed into BVH load function. BVH
function will handle all the BVH construction and its rendering.
For this construction, we used Spatial Median Technique for fast
construction of BVH [38]. The process is illustrated as follows in
Figure 4:-

1. Start Create BV for the objects
2. Calculate all midpoints of the objects

a) Create Midpoints BV
b) Create BV space for all midpoints
c) Find Minimum and Maximum points for the

midpoint space
3. Splitting Process

a) Determine the longest axis for separating plane
b) Split the BV (Midpoints BV) according to their spatial

object median (SOMS)
4. Create Left and Right BV for the objects using midpoint
separating plane.

5. Repeat Procedure until Stopping Criteria is met.

Figure 4. BVH Creation with SOMS implementation

In our experiment, total of 5672 triangles is used to build a
complete urban simulation. Figure 5 shows the corresponding
urban simulation with BVH.

Figure 5. Complex environment of urban simulation with
hierarchical representation (texture off)

Table 1. Comparison of BVH Construction

Object Spatial Median
(ms)

SOMS(ms)

Urban Environment
(BVH Level 6)

5.15625 4.765625

Urban Environment
(BVH level 7)

7.890625 7.4765625

6. CONCLUSION
In this paper, we have described the performance of improved
splitting rule called SOMS. SOMS technique help reducing the
problem of splitting parent nodes into two nodes that contains
fewer triangles and in balanced mode. SOMS had an advantages
of splitting each node until the lowest level with 1 triangle 1 BV
and almost do not need to use splitting heuristic to determine non-

splitting condition (Case where same triangle is exists and
computer floating points problems that rounded the number into
closes floating number). The implementation of SOMS technique
is successfully been done in urban simulation. SOMS could
produce fast and efficient BVH tree especially in urban simulation
where there is large set of polygons that need to be divided
accordingly. However, this technique still has limitation where it
can only be used for large set of polygons or large scale objects
that might contains millions of triangles. This research is still on
going where it is going to be implemented in continuous collision
detection technique.

7. ACKNOLEDGMENT
The author(s) would like to thanks to the members of Graphics
and Visualization Group (GRAVS – www.gravslab.com) for the
research collaboration and technical help. This paper also
supported by Universiti Teknikal Malaysia Melaka PJP Grant
VOT S00903.

8. REFERENCES
[1] M. A. M. Azahar, M. S. Sunar, A. Bade, and D. Daman,

"Crowd Simulation for Ancient Malacca Virtual
Walkthrough," in The 4th International Conference on
Information & Communication Technology and Systems,
Institut Teknologi Sepuluh Nopember (ITS), Surabaya,
Indonesia, 2008, pp. 511 - 516.

[2] N. M. Suaib, A. Bade, and D. Mohamad, "Collision
Detection Using Bounding-Volume for avatars in Virtual
Environment applications," in The 4th International
Conference on Information & Communication Technology
and Systems, Institut Teknologi Sepuluh Nopember (ITS),
Surabaya, Indonesia, 2008, pp. 486 - 491.

[3] G. Jianhong, H. Hanwu, Z. Wenxuan, and L. Yanfei,
"Research on real-time collision detection for vehicle driving
in the virtual environment," in International Conference on
Information and Automation, 2008. ICIA 2008. , 2008, pp.
1834-1839.

[4] J. Hamill and O. S. Carol, "Virtual Dublin - A Framework
for Real-Time Urban Simulation," WSCG, vol. 11, pp. 221-
225, 2003.

[5] J. Willmott, L. I. Wright, D. B. Arnold, and A. M. Day,
"Rendering of large and complex urban environments for
real time heritage reconstructions," presented at the
Proceedings of the 2001 conference on Virtual reality,
archeology, and cultural heritage, Glyfada, Greece, 2001.

[6] T. Manninen, "Interaction in networked virtual environments
as communicative action: social theory and multi-player
games," in Groupware, 2000. CRIWG 2000. Proceedings.
Sixth International Workshop on, 2000, pp. 154-157.

[7] U. S. Team. (2010). Virtual Los Angeles. Available:
http://www.ust.ucla.edu/ustweb/projects.html

[8] M. Dikaiakou, A. Efthymiou, and Y. Chrysanthou,
"Modelling the Walled City of Nicosia," in 4th International
Symposium on Virtual Reality, Archaeology and Intelligent
Cultural Heritage, 2003.

[9] Z. Ruilin, G. Weijie, and Z. Xianghui, "Approach of
Geometric Texture Mapping Based on Discrete Gradient
Searching," in Artificial Intelligence and Computational
Intelligence (AICI), 2010 International Conference on, 2010,
pp. 315-318.

[10] M. H. Yoon, D. O. Kim, R. H. Park, and S. W. Lee,
"Geometry-dependent texture map compression," Electronics
Letters, vol. 46, pp. 43-44, 2010.

[11] L. Tong-Yee, Y. Shao-Wei, and I. C. Yeh, "Texture Mapping
with Hard Constraints Using Warping Scheme,"
Visualization and Computer Graphics, IEEE Transactions on,
vol. 14, pp. 382-395, 2008.

[12] A. Maki, H. Watanabe, and C. Wiles, "Geotensity:
combining motion and lighting for 3D surface
reconstruction," in Computer Vision, 1998. Sixth
International Conference on, 1998, pp. 1053-1060.

[13] R. Dosselmann and Y. Xue Dong, "Mean shift point-mass
level-of-detail," in Electrical and Computer Engineering,
2008. CCECE 2008. Canadian Conference on, 2008, pp.
000037-000042.

[14] [14] C. Yi, W. Kim, and T. Kim, "Improvement of Collision
Detection Performance of Hierarchies by Using Dynamic-
Density of 3D Objects Based on LOD (Level-of-Detail),"
presented at the Proceedings of the Computer Graphics,
Imaging and Visualisation, 2007.

[15] H. Tan Kim and D. Daman, "A review on level of detail," in
Computer Graphics, Imaging and Visualization, 2004. CGIV
2004. Proceedings. International Conference on, 2004, pp.
70-75.

[16] A. E. W. Mason and E. H. Blake, "A graphical representation
of the state spaces of hierarchical level-of-detail scene
descriptions," Visualization and Computer Graphics, IEEE
Transactions on, vol. 7, pp. 70-75, 2001.

[17] [J.W. Chang, W. Wang, and M.-S. Kim, "Efficient collision
detection using a dual OBB-sphere bounding volume
hierarchy," Computer-Aided Design, vol. In Press, Corrected
Proof, 2009.

[18] V. R. Kamat and J. C. Martinez, "Interactive collision
detection in three-dimensional visualizations of simulated
construction operations," Engineering with Computers, vol.
23, pp. 79-91, 2007.

[19] S. Trenkel, R. Weller, and G. Zachmann, "A Benchmarking
Suite for Static Collision Detection Algorithms," presented at
the International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG),
Plzen, Czech Republic, 2007.

[20] S. H. Kockara, T.; Iqbal, K.; Bayrak, C.; Rowe, Richard;,
"Collision Detection - A Survey," presented at the IEEE
International Conference on Systems, Man and Cybernetics,
2007. ISIC., 2007.

[21] F. A. Madera, A. M. Day, and S. D. Laycock, "A Hybrid
Bounding Volume Algorithm to Detect Collisions between
Deformable Objects," in Second International Conferences
on Advances in Computer-Human Interactions, 2009. ACHI
'09. , 2009, pp. 136-141.

[22] C. Tu and L. Yu, "Research on Collision Detection
Algorithm Based on AABB-OBB Bounding Volume," in
First International Workshop on Education Technology and
Computer Science, 2009. ETCS '09. , 2009, pp. 331-333.

[23] H. A. Sulaiman, A. Bade, D. Daman, and N. M. Suaib,
"Collision Detection using Bounding-Volume Hierarchies in
Urban Simulation," presented at the The 5th Postgraduate
Annual Research Seminar, Faculty of Computer Science &
Information System, UTM, 2009.

[24] G. Zachmann, "Collision Detection as a Fundamental
Technology in VR Based Product Engineering," presented at
the 2nd Advanced Study Institute "Product Engineering:
Tools and Methods Based on Virtual Reality, Chania, Crete,
2008.

[25] T. Min, C. Sean, Y. Sung-Eui, and M. Dinesh, "Interactive
continuous collision detection between deformable models
using connectivity-based culling," presented at the
Proceedings of the 2008 ACM symposium on Solid and
physical modeling, Stony Brook, New York, 2008.

[26] S. Redon, A. Kheddar, and S. Coquillart, "Fast Continuous
Collision Detection between Rigid Bodies," Computer
Graphics Forum, 2002.

[27] G. Zachmann, "Virtual Reality in Assembly Simulation -
Collision Detection, Simulation Algorithms, and Interaction
Techniques," Department of Computer Science, Darmstadt
University of Technology, Germany, 2000.

[28] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan, "Efficient Collision Detection Using Bounding
Volume Hierarchies of k-DOPs," IEEE Transactions on
Visualization and Computer Graphics, vol. 4, pp. 21-36,
1998.

[29] J. D. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi, "I-
COLLIDE: an interactive and exact collision detection
system for large-scale environments," presented at the
Proceedings of the 1995 symposium on Interactive 3D
graphics, Monterey, California, United States, 1995.

[30] A. Garcia-Alonso, Nicol, s. Serrano, and J. Flaquer, "Solving
the Collision Detection Problem," IEEE Comput. Graph.
Appl., vol. 14, pp. 36-43, 1994.

[31] [31] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, "A fast
procedure for computing the distance between complex
objects in three-dimensional space," Robotics and
Automation, IEEE Journal of, vol. 4, pp. 193-203, 1988.

[32] [32] L. Liu, Z.-q. Wang, and S.-h. Xia, "A Volumetric
Bounding Volume Hierarchy for Collision Detection," in
10th IEEE International Conference on Computer-Aided
Design and Computer Graphics, 2007 2007, pp. 485-488.

[33] [33] X. Zhang and Y. J. Kim, "Interactive Collision
Detection for Deformable Models Using Streaming AABBs,"
IEEE Transactions on Visualization and Computer Graphics,
vol. 13, pp. 318-329, 2007.

[34] [34] R. e. Weller, J. Klein, and G. Zachmann, "A Model for
the Expected Running Time of Collision Detection using
AABB Trees," in Eurographics Symposium on Virtual
Environments (EGVE), Lisbon, Portugal, 2006.

[35] S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree: a
hierarchical structure for rapid interference detection,"
presented at the Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, 1996.

[36] A. Bade, N. Suaib, M. Z. A, and T. S. T. M, "Oriented
convex polyhedra for collision detection in 3D computer
animation," presented at the Proceedings of the 4th
international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia,
Kuala Lumpur, Malaysia, 2006.

[37] M. C. Lin and D. Manocha, "Collision and Proximity
Queries," in In Handbook of Discrete and Computational

Geometry, 2nd Ed. vol. 35, Boca Raton, FL: CRC Press
LLC, 2004, pp. 787-807.

[38] Sulaman H.A, and Bade A. Balanced Hierarchical Method
for Collision Detection in Virtual Environment.
Communications in Computer and Information Science,

2011, Volume 181, Part 5, 493-501, DOI: 10.1007/978-3-
642-22203-0_43

