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Abstract. Original spectral features contain information pertinent to cer-
tain target spectral features. Without an efficient spectral feature extraction
method, the target detection performance might be degraded. We present
spectral feature extraction techniques based on the Fourier domain for use
in target detection. These feature extraction methods are the Fourier mag-
nitude (FM), Fourier phase (FP), and Fourier coefficient selection (FCS)
methods. In our target detection experiments, we compared the proposed
methods to the principle component analysis (PCA) and independent com-
ponent analysis (ICA) methods and the original spectral features. The
experiment results show that the FCS target detection accuracy is
95.75%, whereas the accuracies of the FM, FP, PCA, ICA methods,
and the original spectral features are 86.76%, 36.28%, 84.51%, 74.49%,
and 78.92%, respectively. The average feature extraction times of the pro-
posed methods are 223% faster than that found for the PCA and 304%
faster than the ICA methods. © 2012 Society of Photo-Optical Instrumentation Engi-
neers (SPIE). [DOI: 10.1117/1.OE.51.11.111704]
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hyperspectral image.
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1 Introduction
With the development of the hyperspectral sensor, research-
ers in the remote sensing field are now able to extract ample
spectral information to identify and discriminate between the
spectral similarities of materials. The hyperspectral image
(HSI) covers a large number of bands, which results in
more accurate and detailed information regarding each mate-
rial compared with other remotely sensed data, such as multi-
spectral images. A typical HSI covers up to several hundred
bands. Although a HSI provides more information, it has
some disadvantages. Due to a huge number of dimensions
in a HSI, an extremely high computational complexity is
required. The greater the number of dimensions, the worse
the discrimination becomes1; this is because a HSI contains a
huge amount of spectral redundancy.2 Therefore, the reduc-
tion of the spectral dimensionality is indispensable in per-
forming classification or target detection.

The most widely used algorithm for dimensionality
reduction in the remote sensing field is the principal compo-
nent analysis (PCA).3 The PCA computes orthogonal projec-
tions that maximize the amount of data variance, and yields
a dataset in a new uncorrelated coordinate system. An
improvement to the PCA is the independent component ana-
lysis (ICA),4 which uses higher order statistics. Some other
methods utilize multiscale approaches, such as derivative
spectroscopy5 and the wavelet transform,6 to extract relevant
features from hyperspectral signals. In the derivative spectro-
scopy method, a smoothing operator and a derivative opera-
tor are used to detect “hills” and “valleys” in the spectral
curves, whereas in the wavelet transform method, the
means of hyperspectral curves using windows of various
widths are applied during the feature extraction.

In single target spectral detection, one needs to discrimi-
nate between the target class and the background, which
usually contains more than 10 material classes. Although
all of the dimensionality reduction methods are able to
reduce the number of spectral bands and extract informative
data regarding the spectral features, the effectiveness of the
target detection feature recognition through the PCA or ICA
methods is usually low and consumes a large amount of pro-
cessing time. Therefore, the thrust of this research was to
develop a fast and effective feature extraction method of
the spectral features used for target detection.

In this paper, we present three target detection spectral
feature extraction techniques based in the Fourier domain.
These feature extraction methods are: Fourier magnitude
(FM), Fourier phase (FP), and Fourier coefficient selection
(FCS). For the FM and FP methods, the spectral features
were converted into the Fourier domain and the magnitude
and the phase of the Fourier complex coefficient were
selected as the spectral feature. In regards to the FCS method,
the real and the imaginary coefficients of the spectra’s Four-
ier complex coefficient were compared. The real coefficients
that were larger than the imaginary coefficients and the ima-
ginary coefficients that were smaller than the real coefficients
were selected for the spectral feature. This FCS technique
employed the significant information extracted from the
real and imaginary coefficients as being successfully applied
in the feature extraction of the texture images.7,8 Because the
Fourier domain groups the coefficients from the most signif-
icant data to the least significant data, we easily selected the
most significant data to reduce the dimensionality of the
spectral feature. Moreover, through the use of the fast Fourier
transform method, the computation of the FCS, FM, and FP
consumed only a small amount of time.

The feature extraction methods were evaluated through
the detection of three real targets placed on the ground before0091-3286/2012/$25.00 © 2012 SPIE
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the HSI was taken. Three target detection algorithms, the
matched filter (MF), generalized likelihood ratio test
(GLRT), and adaptive coherence/cosine estimator (ACE)
methods were tested along with the spectral feature extrac-
tion methods. The remainder of this paper is organized as
follows: Sec. 2 presents related work, Sec. 3 presents the
detailed algorithms of the proposed feature extraction meth-
ods based on the Fourier domain phase, the experiment eva-
luations are described in Sec. 4, and the conclusions and
future work are discussed in Sec. 5.

2 Related Works

2.1 Principle Component Analysis

Milton et al.3 used the PCA to reduce the spectra dimension-
ality. The spectra can be converted to the relevant dimension-
ality by a linear transformation with the significant
eigenvectors computed from the PCA. When the eigenvec-
tors are convolved with the spectra, they transform the spec-
tra into fewer data points. The eigenvectors are determined
by computing the covariance matrix of the mean of the spec-
tral data matrix by:

½Cjk� ¼
P

n
i¼1 XijXik −

P
n
i¼1

Xij

P
n
i¼1

Xik

N

N − 1
; (1)

where ½Cjk� is the covariance matrix of the mean, X is a sin-
gle band measurement, N is the number of spectra in the
matrix, j and k are indices over the spectral bands, and i
is an index over the number of spectra. The covariance
matrix is then diagonalized by finding a matrix Q in such
a manner that:

½Q�−1½C�½Q� ¼ ½λ�½I�; (2)

where I is the identity matrix. The columns of matrix Q are
the eigenvectors and the column matrix λ represents the cor-
responding eigenvalues. Matrix λ is then sorted in descend-
ing order. The resulting PCA feature is the element of matrix
Q corresponding to the sorted eigenvalues indices. The
sorted matrix Q is also named as the principle component
of the spectra data. The principle component is sorted
from the significant eigenvectors to the less significant eigen-
vectors. These eigenvectors are then used as the feature vec-
tors of the spectra.

2.2 The ICA

The goal of the principle component analysis is to minimize
the reprojection error found in compressed data. The goal of
the ICA is to minimize the statistical dependence between
the basis vectors. Mathematically, this calculation can be
written as:

WXT ¼ U; (3)

where the ICA finds the linear transformation W that mini-
mizes the statistical dependence between the rows ofU given
by data matrix X. The basis vectors in the ICA are neither
orthogonal nor ranked in order. There are a great many algo-
rithms used to find W The algorithm proposed by Kolenda
et al.9 will be applied. This ICA algorithm is an enhanced

version of the Molgedey and Schuster algorithm4 that pos-
sesses a fast computation of the model. Let Xτ ¼ fXj;tþτg be
the time shifted data matrix where Xj;t is the frequency of the
j’th term during time t. The lag parameter τ is automatically
determined by exploiting the difference between the autocor-
relations of the data matrix X. Then by using the singular
value decomposition (SVD) method, the principle compo-
nent subspace is calculated by decomposing:

X ¼ UDVT: (4)

The quotient matrix can now be written as:

Q̂ ¼ 1

2
DðVT

τ Vþ VTVτÞD−1 ¼ ΦΛΦ−1: (5)

The Φ contains the rectangular ICA basis projection onto
the PCA subspace and U holds the projection from the PCA
subspace. The estimated mixing matrix and the source sig-
nals are given by:

A ¼ UΦ (6)

S ¼ Φ−1DVT: (7)

Φ can be selected according to the significant principle com-
ponents. By only selecting a certain number of significant
principle components after the SVD, the dimensions
of the input data can be reduced. The final estimated
source signals S are used as the feature vectors of the
input data.

3 Proposed Method
This section presents the proposed feature extraction
methods based on the Fourier domain, the FCS, FM, and
FP methods. The first step was to transform the original spec-
tral sðnÞ, n ¼ 0; 2; 3; : : : ; N þ 1 into the Fourier domain.
The Fourier transform and inverse transform of sðnÞ are
given by:

SðkÞ ¼
XN−1

n¼0

sðnÞe−2πi
N kn (8)

sðnÞ ¼ 1

N

XN−1

k¼0

SðkÞe−2πi
N kn; (9)

where N is the number of dimensions of spectral sðnÞ. Using
Eq. (8), the original spectral sðnÞ was converted to the
Fourier coefficients SðkÞ. For the FM feature extraction tech-
nique, the magnitude of SðkÞ was calculated using the fol-
lowing formula:

FMðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RefSðxÞg2 þ ImfSðxÞg2

q
: (10)

For the FP feature technique, the phase of SðkÞ was cal-
culated using the following formula:

FPðxÞ ¼ tan−1
�
ImfSðxÞg
RefSðxÞg

�
: (11)

Optical Engineering 111704-2 November 2012/Vol. 51(11)

Saipullah and Kim: Target detection of hyperspectral images : : :



And finally, for the FCS feature technique, a combination
of the selected real and imaginary coefficients of SðkÞ was
applied. The FCS was calculated using the following
formula:

FCSðxÞ ¼ RðxÞ þ IðxÞ; (12)

where

RðxÞ ¼
�
RefSðxÞg; if RefSðxÞg ≥ ImfSðxÞg
0; otherwise

IðxÞ ¼
�
ImfSðxÞg; if ImfSðxÞg ≥ RefSðxÞg
0; otherwise

: (13)

A graphical explanation of the FCS method is shown in
Fig. 1. First, the Fourier transform of the spectrum is calcu-
lated. The first coefficient of the Fourier transform is very
large compared with the other coefficients. For a clear gra-
phical view of the Fourier coefficients, the first coefficient is
normalized by dividing it by the sum of all of the coeffi-
cients. Note that the normalization does not affect the discri-
mination power of the feature extraction method. Because of
this, the normalization is only done for the vivid graphical
view of the coefficient and is not applied in the FCS to reduce
the computation time. The Fourier transform will result in
real and imaginary coefficients. Using Eq. (13), these coeffi-
cients are thresholded according to the conditions given in
the formula. Finally, the thresholded real coefficient and
the thresholded imaginary coefficient are combined as
in Eq. (12).

In Eqs. (11)–(13), x is the desired dimension of the spec-
tral feature, which is in the range of 0 ≤ x < N∕2. The range
of x is limited to one-half of the original spectral N dimen-
sion due to the redundancy of the Fourier transform of real
numbers.10 The Fourier coefficients SðkÞ of a real number
repeat themselves in SðN∕2Þ. So only the halves of the

Fourier coefficients SðkÞ are significant. Because the Fourier
domain groups the coefficients from the most significant data
to the least significant data, the spectral feature can be easily
reduced by selecting only the upper part FMðxÞ, FPðxÞ, and
FCSðxÞ within the range of 0 ≤ x < N∕2.

The magnitude and the phase of the Fourier coefficients
are the basic feature extraction techniques widely used in the
image and audio processing fields.11–13 Some studies were
performed on texture discrimination that apply the FCS
approach.7,8 In these studies, the real Fourier coefficients
were thresholded against the imaginary Fourier coefficients
and converted into a binary code word. The approach used
by the FCS was different from those studies in that the FCS
does not only utilize the sign of the coefficients, but also

Fig. 1 The graphical explanation of the FCS method.

Fig. 2 The RGB bands of the Inha University hyperspectral image.
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utilizes the value of the complex coefficients themselves.
This produces a unique and specific pattern in regards to
the FCS spectral feature, which is able to discriminate the
spectral features used for target detection.

4 Experiment
This section discusses the experiment performed regarding
the performance of the dimensionality reduction methods.

The methods are evaluated in terms of their spectral classi-
fication accuracy and their HSI segmentation accuracy.

4.1 Experimental Setup

In the experiment, the proposed methods, namely the FCS,
FM, and FP, were evaluated in terms of detection accuracy
using various feature dimensions, receiving operating char-
acteristic curves, detection versus threshold curves, and time

Fig. 3 The targets used in the experiment: (a) green nonwoven fabric, (b) gray canvas tarps, and (c) white canvas tarps.

Fig. 4 The targets and their ground truth images, each row indicates the three different targets, the left column shows the targets, the center column
shows the ground truth images of the targets, and the right column shows the boundary of the ground truth image.

Optical Engineering 111704-4 November 2012/Vol. 51(11)

Saipullah and Kim: Target detection of hyperspectral images : : :



Fig. 5 The green nonwoven fabric detection accuracy according to
method: (a) MF, (b) GLRT, and (c) ACE.

Fig. 6 The gray canvas tarp detection accuracy according to method:
(a) MF, (b) GLRT, and (c) ACE.
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efficiency. All of the experiments were executed on a com-
puter with an Intel Core™ 2 Duo 2.33 GHz and 2 GB of
main memory. The program was coded using MATLAB
R2007a and the Windows XP operating system. The pro-
posed FCS, FM, and FP methods were compared to original
spectral features and two other dimensionality reduction fea-
tures, the PCA and ICA methods discussed in Sec. 2.

A HSI of Inha University was used in the experiments.
The resolution of the HSI is 545 × 618 pixels at a scale
of 30 m per pixel. These HSIs were captured using Hyperion
sensors with a total of 96 bands after removing the noise
bands and the corrupted bands. The wavelengths of the
bands range from 365.2 to 1044.6 nm. The Inha University
HSI in the RGB bands is shown in Fig. 2. The three real
targets that were implemented in the experiment are indi-
cated by circles. The targets were a green nonwoven fabric,
gray canvas tarps, and white canvas tarps placed on the Inha
University lawn. The images of the targets are shown in
Fig. 3. The ground truth images of the three targets were
carefully created by observing the spectral features manually.
The three targets, their ground truth images, and the bound-
ary of the ground truth images are shown in Fig. 4.

The feature extraction methods were evaluated through
the detection of three real targets that were placed on the
ground before the HSI was taken. Three target detection
algorithms, the MF,14 GLRT,15,16 and ACE17,18 were per-
formed using the spectral feature extraction methods. To
evaluate the FCS, FM, and FP algorithms, the spectral fea-
ture extraction methods were compared to the PCA, ICA,
and the original spectral features.

4.2 Experimental Results

The proposed FCS, FM, and FP methods were evaluated and
compared with ICA, PCA, and the spectral feature methods
through various experiments. The number of dimensions dif-
fers for the FCS, FM, FP, ICA, and PCA methods according
to their setup, whereas the number of dimensions for the ori-
ginal spectral features always covers the entire 96 dimen-
sional band. The first experiment measured the target
detection accuracy using the various feature dimensions.
Based on the results of the target detection accuracy experi-
ment using the various feature dimensions, the most appro-
priate dimension number was selected for the target detection
accuracy with fixed feature dimensions. Finally, the effi-
ciency of the spectral feature extraction was assessed by
computing the target detection time consumption for each
feature extraction method and target detector. The target
detection accuracy was measured using the following
formula:

Detection accuracy

¼ Number of correctly detected pixels of the target

Total number of pixels of the target
:

(14)

4.2.1 Target detection evaluation

To ensure that the three target detectors, namely the MF,
GLRT, and ACE methods, could operate automatically,
the detection threshold of those target detectors were deter-
mined. The detection threshold can be determined by using a
constant false-alarm rate (CFAR) processor.19 A CFAR pro-
vides detection thresholds that are relatively immune to noise

Fig. 7 The white canvas tarp detection accuracy according to
method: (a) MF, (b) GLRT, and (c) ACE.
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and background variations. By using an appropriate CFAR
setting, target detection possessing a consistent false-alarm
rate and high detection accuracy can be achieved. The
performance of the original spectral feature can also be
measured by scrutinizing how easily a threshold can be
determined in maintaining a perfect balance between a
low false alarm rate and high true positive or high correct
target detection rate.20 For this experiment, the CFAR was
set to 0.001.

The target detection routines using the MF, GLRT, and
ACE methods were repeated 40 times using different feature
dimension sizes in the range from 1 to 40 dimensions. The
target detection accuracies of the green nonwoven fabric
using the MF, GLRT, and ACE methods with difference
spectral features are shown in Fig. 5; the gray and white
tarp results are shown in Figs. 6 and 7, respectively. As
shown in Fig. 5, the target detection accuracy was unstable
at the beginning ranging wildly until it stabilized at a range of
15 dimensions and above. Most of the feature dimension
results show an increase to 90% target detection accuracy.
For the spectral feature extraction, the range was 100%
because the spectra were not used in feature extraction.
Figure 6 shows the results for the gray canvas detection accu-
racy for different dimensions. In average, all the feature
extraction increase in the 5 range and decrease when the
range is 20 and above. From the graphs we can see that
the FCS method was more stable than the other feature
dimension methods. Figure 7 shows that the MF detector
was better compared with the GLRT and ACE detectors,

the data was more stable and the difference percent of
range was low.

From these results, it can be seen that by dimension ¼ 20,
the detection accuracy became stable and high for all of the
features in the MF, GLRT, and ACE methods for all three
targets. Therefore the feature dimension of 20 was selected
to execute the later experiments. To see the accuracy of the
target detection accuracy visually, the segmentation between
the target and the background was performed on all of the
targets using the MF, GLRT, and ACE target detectors
using the proposed and the other feature extraction methods.
All of the target detection was done using dimension

Fig. 8 The visual result of the green nonwoven fabric detection: (a) MF, (b) GLRT, and (c) ACE. White dots inside the target boundary are the true
positives whereas outside the target boundary are the false positives; black is the background.

Fig. 9 The detection accuracy of green nonwoven fabric detection
using MF, GLRT, and ACE target detectors.
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D ¼ 20, CFAR ¼ 0.001. Figure 8 shows the target detection
of the green nonwoven fabric. The target detection of this
target was simple because the target was small and had a
discriminative spectral feature. Most of the feature extraction
methods were able to detect the whole target with a high true
positive rate. Therefore, for the performance evaluation the
detection of the false positives for each feature extraction
method must also be observed.

Looking at Fig. 8, it can be clearly seen that the FP and the
original spectral methods performed badly for the MF target
detector, generating a high false positive rate compared with
the other feature extraction methods. For the GLRTand ACE
target detectors, all of the feature extraction methods per-
formed well, with a high correlation for true positives and
few false positives. This demonstrates the superior perfor-
mance of the GLRT and ACE target detectors compared
with the MF detector. For an accurate observation of the tar-
get detection accuracy, we refer to the bar plot shown in
Fig. 9. For the MF detector bars, the FP feature extraction
method was unable to detect any target. Compared with
the MF, we can see from the bars that the ACE and
GLRT target detectors are able to detect the target using
all of the feature extraction methods. This shows the robust-
ness of the ACE and GLRT detectors that can handle any
type of input including the angle or phase. However, we
were unable to conclude which detector or feature extraction
method was better because the target was small and easy to
detect. For a better comparison of the detectors and feature
extraction methods, we analyzed the target detection

performance using the more difficult white and grey targets,
because they were larger and contained more subpixels com-
pared with the green nonwoven fabric.

Figure 10 shows the target detection of the gray canvas
tarps. Most of the feature extractors were able to detect
the entire target but were unable to get a 100% accurate
high true positive rate. There were some false positives
detected by the detectors with a higher rate compared
with the green nonwoven fabric detection. This is because
of the large number of subpixels in the target. Most of
the subpixels were located near to boundary of the target.
These subpixels are hard to classify because they contain

Fig. 10 The visual results of the gray canvas tarp detection: (a) MF, (b) GLRT, and (c) ACE. White dots inside the target boundary are the true
positives whereas outside the target boundary are the false positives; black is the background.

Fig. 11 The detection accuracy of gray canvas tarps detection using
MF, GLRT, and ACE target detectors.
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other material spectral information. We can see that the FP
and SPEC performed badly in all of the target detectors com-
pared with other feature extraction methods. For the case of
SPEC, no feature extraction was done to the spectral, so it
still contains the redundant and insignificant information in
it. FP is based on the phase of the spectra that contains posi-
tive and negative signs of the angles. These angle values are
extremely sensitive to translation or position even a small
change to the vector of the element in spectral could change
the sign or the phase value significantly. Because of this dis-
advantage, the performance of FP becomes inconsistent. For
a better observation, we can see the bar plot of the accuracies
as shown in Fig. 11. If we focus on the SPEC and PCA detec-
tion accuracies, the accuracies in ACE and GLRTare smaller
than that of MF. This shows that MF could detect better using
the raw spectra and eigenvectors compared with ACE and
GLRT. But when it comes to Fourier transform based feature,
ACE and GLRT perform better.

Figure 12 shows the target detection of the white canvas
tarps. Most of the feature extraction methods were able to
detect the entire target with a high true positive rate.
From Fig. 12, the FP and ICA methods performed badly
when the MF detector was employed. As explained before,
MF is only good with the raw data and significant spectra
vector (eigenvector) as implemented in PCA. Other
approaches, such as ICA, perform badly in the MF. It can
be seen that the FCS detector shows consistent accuracies
in each target detector. To demonstrate the accurate observa-
tion of the target, we refer to the bar plot in Fig. 13. The
performance between the GLRT and ACE detectors were
similar with a small difference in accuracies ranging from

0.01% to 10% for each feature extraction method. The accu-
racy of FCS is slightly smaller in the MF compared with
ACE and FCS. FCS is not based on the vector of the spectra
so it performance might be lower in the MF.

4.2.2 The time consumption evaluation

Tables 1–3 show the time consumption in second (s) of the
feature extractions (FE) and the target detections (DET) of
the three targets using MF, ACE, and GLRT detectors.
Each FE and DET operation underwent 100 iterations and
the average time was recorded. The spectral method does
not require feature extraction; its FE time is zero. From
all of the tables, the target detection for Fourier

(a) FCS, FM, FP, PCA, ICA, SPECTRAL using MF

(b) FCS, FM, FP, PCA, ICA, SPECTRAL using GLRT

(c) FCS, FM, FP, PCA, ICA, SPECTRAL using ACE 

Fig. 12 The visual results of the white canvas tarp detection: (a) MF, (b) GLRT, and (c) ACE. White dots inside the target boundary are the true
positives whereas outside the target boundary are the false positives; black is the background.

Fig. 13 The detection accuracy of white canvas tarps detection using
MF, GLRT, and ACE target detectors.
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transform-based features (FCS, FP, FM) achieved the smal-
lest time consumption compared with the other feature
extraction methods. The time for the ICA and PCA feature
extraction was longer than others. This method is not recom-
mended for use in embedded systems or light computer sys-
tems because the algorithm is more complicated and time
consuming. Among all of the Fourier transform-based

feature extraction methods, FCS and FM consume less
time compared with FP, because FCS and FM only utilize
fast mathematical operations, such as addition, subtraction,
and multiplication.

From the tables we can see that the MF detector consumes
smaller time than other detectorswhenusing thegreennonwo-
ven fabric. Table 2 summarizes the time consumption

Table 1 The time consumption in second of the feature extraction (FE) and target detection (DET) of the green nonwoven fabric.

ACE GLRT MF

Method FE DET FEþ DET DET FEþ DET DET FEþ DET

FCS 0.0765 0.1179 0.1944 0.1461 0.2226 0.0311 0.1075

FM 0.0554 0.1248 0.1802 0.1521 0.2075 0.0340 0.0894

FP 0.1002 0.2454 0.3456 0.2448 0.3449 0.3111 0.4113

PCA 17.8902 0.1435 18.0337 0.1860 18.0762 0.0217 17.9119

ICA 24.2299 0.3123 24.5422 0.3642 24.5941 0.0709 24.3008

SPEC 0.0000 0.1524 0.1524 0.2032 0.2032 0.0449 0.0449

TOTAL 1.0964 43.4486 1.2965 43.6487 0.5136 42.8658

Table 2 The time consumption in second of the feature extraction (FE) and target detection (DET) of the gray canvas tarps.

ACE GLRT MF

Method FE DET FEþ DET DET FEþ DET DET FEþ DET

FCS 0.0775 0.0722 0.1497 0.0934 0.1708 0.0730 0.1504

FM 0.0566 0.0653 0.1219 0.0844 0.1411 0.0808 0.1374

FP 0.0987 0.1029 0.2016 0.1201 0.2187 0.0453 0.1440

PCA 17.9362 0.0584 17.9945 0.0756 18.0117 0.0501 17.9863

ICA 24.4663 0.0581 24.5245 0.0668 24.5331 0.0744 24.5408

SPEC 0.0000 0.0706 0.0706 0.0941 0.0941 0.0969 0.0969

TOTAL 0.4276 43.0628 0.5343 43.1696 0.4206 43.0558

Table 3 The time consumption in second of the feature extraction (fe) and target detection (DET) of the white canvas tarps.

ACE GLRT MF

Method FE DET FEþ DET DET FEþ DET DET FEþ DET

FCS 0.0765 0.0579 0.1343 0.0753 0.1517 0.0562 0.1327

FM 0.0810 0.0480 0.1290 0.0621 0.1431 0.0522 0.1332

FP 0.0985 0.3096 0.4081 0.3981 0.4966 0.2108 0.3093

PCA 17.8045 0.0578 17.8623 0.0751 17.8796 0.0582 17.8627

ICA 24.3754 0.1089 24.4843 0.1372 24.5126 0.1877 24.5630

SPEC 0.0000 0.0705 0.0705 0.0943 0.0943 0.1020 0.1020

TOTAL 0.6527 43.0885 0.8422 43.2779 0.6671 43.1028
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regarding the feature extraction and target detection of thegray
canvas tarps. As shown in Table 2, the FM feature extraction
consumes the smallest time than other feature extractionmeth-
ods. The time consumption found for MF and ACE detector
was almost identical; however, theMFdetector performedbet-
ter than theACEdetector in terms of overall time consumption
using all of the feature extraction methods. Table 3 shows the
time consumption regarding the feature extraction and target
detection of the white canvas tarps. As shown in Table 3, the
FCSmethod displayed the smallest time consumption regard-
ing the feature extraction. The time consumption for the ACE
detector was higher comparedwith the GLRTandACE detec-
tors, whereas the difference between the ACE andMF speeds
was small.

5 Conclusion and Future Works
This paper proposed feature extraction methods based on the
Fourier transform called the FCS, FP, and FM. FCS is based
on the coefficient selection, whereas FP is based on the
phase, and FCS is based on the magnitude. Among all of
these feature extraction methods, FCS showed the most con-
sistent and high discrimination output of the ACE, GLRT,
and MF target detectors. In terms of time consumption,
the Fourier transform-based feature consumes significantly
smaller time compared with standard feature extraction
methods, such as PCA and ICA. For the target detectors,
MF performance depended on the feature. MF only worked
consistently with the original spectra or the vectors of the
spectra. ACE and GLRT seemed to be unaffected by the
spectra feature type and generated more stable and consistent
results compared with MF. For future works, we would like
to build our own target detector that can be optimized the
Fourier domain-based feature.
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