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ABSTRACT

This paper presents numerical study of droplet dynamics on solid surface 
using multiphase model of lattice Boltzmann method. This method is an 
efficient alternative tool for the numerical simulation of multiphase flow. 
In this paper, we start by describing a choice of interaction potential that 
reproduces the attraction force between particles together with the varying 
contact angles on surface by balancing the adhesive and cohesive force. 
After showing how the formulation of the particles interaction fits into 
the framework of lattice Boltzmann simulations, numerical results are 
presented to highlight the applicability of the approach.
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1.0	I NTRODUCTION

Physical properties of droplet dynamics on solid surfaces have attracted 
considerably growing interest during the last years (S. L. Manzello and 
J. C. Yang, 2002), (L. O. E. Santos, et.al.,2008). The droplet dynamics 
phenomenon is not only important in many industrial processes such 
as coating of substances, melting of irons, boiling water reactor (Y. W. 
Kruijt et.al.,2004) etc, but also in everyday situations such as droplet 
motion on car’s front glass, spreading of water on TABLE, hair dryer 
and so on. Some biological application areas are motions in the tear 
film on the cornea of the eye (B. Robert and C. Stanley,1974),and flows 
on liquid covered membranes in the lungs (H. Slama et.al,.1973). 
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The motion of droplets on solid surface also plays an important role in 
transport phenomena. When a droplet comes into contact with a solid 
surface, capillary force drive it towards equilibrium. The process of the 
droplet reaching equilibrium is known as spreading and corresponds 
to the three phases line between gas, liquid and solid moving over the 
surface (M. A. Abdullatif  et.al,.2003). 

Considering the significance of these phenomena in theory and 
applications, many of the researchers have diverted their attention to 
this type of multiphase flow area. However, experimental investigation 
on the behaviour of droplet on surface is very difficult if not impossible 
and high in cost due to complexity of experimental setup. Due to this 
reason, it is necessary to establish a multiphase numerical model which 
can exactly simulate the multiphase phenomena especially the droplet 
motion on a surface. Currently, multiphase lattice Boltzmann method 
(LBM) is the most suitable numerical tool in predicting multiphase 
fluid flow problems.

The lattice Boltzmann method, the numerical method that will be 
used in this study, is the only numerical technique that directly treats 
the flow behaviour at the microscopic level. LBM utilizes the particle 
distribution function to describe collective behavior of fluid molecules. 
This new numerical method, evolved from mathematical statistical 
approach, has been well accepted as an alternative numerical scheme 
in computational fluid dynamics field. In comparison with other 
numerical schemes, LBM is a “bottom up” approach, derives the Navier-
Stokes equation from statistical behavior of particles dynamics. The 
imaginary “propagation” and “collision” processes of fluid particles 
are reconstructed in the formulation of LBM scheme. These processes 
are represented by the evolution of particle distribution function, f(x,t) 
which describes the statistical population of particles at location x and 
time t.

The advantages of LBM include simple calculation procedure (C. S. N. 
Azwadi and T. Tanahashi, 1995), suitability for parallel computation 
(J. Axner et.al., 2008), ease and robust handling of multiphase flow (T. 
Inamuro et.al,.2004), complex geometries (M. Gustav and H. Gabor, 
2006), interfacial dynamics and others (C. S. N. Azwadi and T. Tanahashi, 
2007 ). A few standard benchmark problems have been simulated by 
LBM and the results are found to agree well with the corresponding 
Navier-Stokes solutions (Z. Guo, 2000).

In simulating multiphase flow, the main advantages of LBM lie in the 
fact that, unlike other numerical scheme, the treatment at the fluid-fluid 
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or fluid-solid interface is very simple. LBM automatically generate the 
interface region with no special treatment on the simulation program 
meaning that no extra computational burdens are needed to track the 
interface. Application of LBM is expected to increase the efficiency, 
accuracy and the capability of the current computer performance 
without sacrificing the need of the detailed behavior of fluid particles 
in the multiphase phenomena.

There were several works have been done on multiphase flow using 
LBM, however, only few researches studied droplet dynamics on 
surface. Therefore, the objective of current study is to demonstrate the 
capability of LBM in simulating droplet dynamics on solid surface.

The structure of this paper is as follow. To begin, we show the formulation 
of multiphase lattice Boltzmann model from Landau free energy theory. 
After showing how the formulation of the particles interaction fits in 
to the framework of lattice Boltzmann simulations, numerical results 
of droplet spreading on a solid surface are presented to highlight 
the applicability of the approach. The final section concludes current 
study. 

2.0		M ultiphase Lattice Boltzmann Model 

The starting points for the lattice Boltzmann simulations is the evolution 
equation, discrete in space and time, for a set of distribution functions 
f. If a two-dimensional nine-velocity model (D2Q9) is used, then the 
evolution equation for a given f takes the following form
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f i x  eit, t  t  f i x, t   1


f i x, t  f i
eq x, t                                                                          (1) 

where t is the time step, e is the particle’s velocity, τ is the relaxation time for the collision 
and i = 0,1,…,8. Note that the term on the right hand side of Equation (S. L. Manzello and J. 
C. Yang, 2002), is the collision term where the BGK approximation has been applied (P. L. 
Bhatnagar, 1954). The discrete velocity is expressed as ; 
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f i
eq  is an equilibrium distribution function, the choice of which determines the physics inherent 

in the simulation. In the free-energy two-phase lattice Boltzmann model, the equilibrium 
distribution is written in the following term 

f i
eq  Ai Bi ei,u C i ei,ei, uu 

          Du2 G eiei
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where the summation, over repeated Cartesion indices, is understood. The coefficients A, B, C, 
D and G are determined by placing constraints on the moments of f i

eq . The collision term 
conserves mass and momentum, and therefore the first and second moments of f i

eq  are 
constrained by 

f i
eq

i
  

                          

                                                                                                 (4) 

ei, f i
eq

i
 u

                             

                                                                                     (5) 

The continuum macroscopic equations approximated by the evolution equation correctly 
describe the hydrodynamics of a one-component, non-ideal fluid by choosing the next moment 
of f i

eq . This gives 

ei,ei, f i
eq

i
  P  u 

                u   u   u   
                                                                                  (6) 

 
where    1 2 t  3is the kinematic shear viscosity, P  is the pressure tensor, and   is the 
time relaxation. In order to fully constrain the coefficients A, B, C, D and G , a fourth 
condition is applied, which is 

ei,ei, ei, f i
eq
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 

c2

3
u  u  u                                                                         (7) 

The thermodynamics of the fluid enters the lattice Boltzmann simulation via the pressure 
tensor P . The equilibrium properties of a system can be described by a Landau free energy 
functional as follow [20] 
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The right hand side terms of Equation (8) represent free energy density 
of the bulk phase, free energy from density gradient and contribution 
from interaction between fluid and solid [21] respectively. k is a constant 
related to the surface tension. Following Gennes [22] and Seppecher (P. 

Seppecher, 1996), we expand 
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where p0   T,  T,  is the equation of state of the fluid. 
The Cahn model is used to relate 1 to  , the contact angle defined as the angle between the 
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where  p  Tc T  Tc ,   cos1 sin 2   and   is a constant typically equal to 0.1. 

3.0  Results and Discussion 
Our first numerical test is the simulation of droplet spreading phenomenon on a horizontal flat 
plate and compared the ‘benchmark’ result (F. A. L. Dullien, 1979). Initially, the droplet was 
set at 1800 contact angle or in non-wetting conditions. The droplet was then left to spread until 
it reached the equilibrium contact angle w. FIGURE 1 shows the droplet on flat surface at 
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In the next section, the deformation of the droplet under a gravitational 
force on a horizontal plate will be discussed.
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4.0  Droplet Spreading with Gravitational Effect 
 
The effect of the gravitational force plays a vital role in determining the shape of a droplet for 
several of Bond numbers. The dimensionless Bond number reflects the balance between the 
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In our simulation, we varied the value of gravitational force g, to obtain various values of the 
Bond number. Then the simulated droplets at the equilibrium condition were compared 
quantitatively with those of (K. Murakami et al,.1998) (not shown).  
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4.0		D roplet Spreading with Gravitational Effect

The effect of the gravitational force plays a vital role in determining 
the shape of a droplet for several of Bond numbers. The dimensionless 
Bond number reflects the balance between the gravitational and 
capillary forces, given by
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In our simulation, we varied the value of gravitational force g, to obtain 
various values of the Bond number. Then the simulated droplets at the 
equilibrium condition were compared quantitatively with those of (K. 
Murakami et.al,.1998) (not shown).
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The ratio of droplet wet length and droplet height is again plotted 
with the Bond number. The comparison of results between the present 
approach and the experimental data by (K. Murakami et al,.1998)  is 
presented in FIGURE 6. Good agreement can be seen between these 
two approaches.

5.0		C onclusion

This paper has shown the capabilities of the lattice Boltzmann method 
in solving the two-phase system. The advantages of the multiphase 
lattice Boltzmann approach are not only the capability of incorporating 
interface deformation and interaction but also the interparticle 
interactions, which are difficult to implement in traditional methods. 
The two phase-flow benchmark test showed the relaxation process of 
the droplet, which is in agreement with the results of other researchers. 
It is demonstrated that the free energy two-phase lattice Boltzmann 
model has the capability to simulate the dynamics of droplet on solid 
surface. These indicate that the two-phase lattice Boltzmann scheme 
may be applicable for simulating interfacial dynamics in immiscible 
phases. 
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