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Abstract 
 

In this paper, the modeling and design of the depth control 

systems using Neural Network Predictive Control (NNPC) 

for a small unmanned underwater vehicle (UUV) will be 

described.  Underwater vehicles consist of robotic vehicles 

that have been developed to reduce the risks of human life 

and to carry out tasks that would be impractical with a 

manned mission.  The design of a depth control of an UUV 

is described in this paper.  The main purpose of the 

underwater vehicle is that the vehicle must be stable over 

the entire range of operation. These techniques have the 

purpose of ensuring zero steady state error and minimum 

error in response to step commands in the desired depth.  

The depth performance for NNPC is discussed in terms of 

error and execution time. This NNPC will be compared with 

conventional controller such as PD controller and also by 

using the Fuzzy Logic Controller (FLC). For the 

comparison of computational time between this controllers, 

it can be observed that Fuzzy Logic is faster and neural 

network predictive controller is the slowest between them. It 

has been shown that the neural network predictive 

controller improved the transient response and error 

measure which shows the effectiveness of the designed 

controller. 
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Introduction 

 

In the past decade, underwater vehicles are playing an 

increasingly important role in the exploration and 

exploitation of the subsea domain world-wide, with 

important contributions to be made in the military, 

commercial and scientific sectors.  Autonomous underwater 

vehicles (AUV) have matured and become operational 

assets, useful for a variety of oceanographic and military 

applications.  Small and high performance vehicles have 

proven adept at a variety of undersea survey, mapping, and 

measurement tasks.  The ability to operate free from tethers, 

from expensive dynamically-positioned vessels, and without 

human intervention during the dive sequence have great 

potential for replacing traditional towed-systems and 

remotely operated vehicles.  More important, it has also 

become clear that AUV have unique capabilities such as 

close-in terrain following, multiple vehicle operations, and 

extremely long endurance.  

 

There are different types of underwater vehicles.  Two types 

of vehicles which is manned and unmanned systems.  We 

are all familiar with the manned systems. They can be 

described simply as falling into two sub-classes which is 

military submarines and non-military submersibles such as 

those operated to support underwater investigations and 

assessment.  The navies of the world utilize a number of 

different classes of submarines to conduct their missions. 

 

Unmanned submersibles also fall in to a number of different 

sub-classes.  The simplest and most easily described are 

those submersibles that are towed behind a ship.  They act 

as platforms for various sensor suites attached to the vehicle 

frame.  A second type of submersible system is called a 

Remotely Operated Vehicle (ROV).  An ROV is a tethered 

vehicle.  The tether supplies power and communication to 

the ROV and is controlled directly by a remote operator.  A 

third type of unmanned submersible is an Unmanned 

Untethered Vehicle (UUV).  This untethered vehicle 

contains its own onboard power, but is controlled by a 

remote operator via some type of a communications link.  

An AUV is an undersea system containing its own power 

Neural Network Predictive Control (NNPC) of a Deep Submergence Rescue 

Vehicle (DSRV) 
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and controlling itself while accomplishing a pre-defined 

task.  A further distinction between the AUV and UUV is 

that the AUV requires no communication during its mission 

whereas the UUV requires some level of communication for 

it to complete its assigned mission. 

 

The ROV linked to a support ship by an umbilical cable 

which carries power and provide a communication link. 

ROV is extensively used by the oil industry, often as 

inspection and repair tools for oil rigs.  In these cases there 

is usually no support ship, the vehicle being deployed from 

the rig itself.  There is an additional problem in that as the 

vehicle moves through the structure of the rig, the position 

of the umbilical cable must be known otherwise the vehicle 

can become entangled.  AUVs do not suffer from these 

problems.  The AUV concept is of a self contained vehicle 

with enough on-board power and intelligence to carry out 

task minimal human invention.  The advantages of being 

self-contained is that the vehicle does not required support 

ship and it has no umbilical cable to limit its range or to 

became entangled in a surrounding structure.  It can 

undertake missions that would be impractical or impossible 

with an ROV [1], [2], [3]. 

 

Effective control scheme require relevant signal in order to 

accomplish the desired position and velocities for the 

vehicle.  A suitable controlling method of underwater 

vehicles is very challenging due to the nature of underwater 

dynamics [4], [5].  The focus of this project is to control the 

depth of this vehicle in order to give the desired position. 

Objectives of this paper are to investigate the existing model 

of a deep submergence rescue vehicle and to design a neural 

network predictive controller for a deep submergence rescue 

vehicle. 

 

Neural Network Predictive Control 
 

The neural network predictive control can be considered as a 

basic type of model based predictive system in which the 

model is a trained neural network as shown in Figure 1.  It 

usually consists of four components, which is the plant to be 

controlled, the desired performance of the plant, a neural 

network that models the plant, and an optimization process 

that determines the optimal inputs needed to produce the 

desired performance for the plant.  The neural network 

predictive control normally optimizes the plant responses 

over a specified time horizon [6],[7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- Block diagram of neural network predictive 

control system 

The role of neural network model predictor, which uses the 

error e between the system output yp and the neural network 

model output ym, as neural network training signal.  The 

nonlinear neural network model is to predict the future 

performance, determine the control signal u by minimizing 

cost function, J as in Equation (1) [8].  

 

The main steps of the neural network predictive algorithm 

are listed as follows: 

i. Calculate a desired performance of the plant with a 

reference model or appointed trajectory. If the value 

is unknown, keep it constant or use the same value as 

used in the last time. 

ii. Start with the previous control inputs, and predict 

performance of the plant using the neural network 

model. 

iii. Conduct the optimization analysis to minimize the 

cost function through calculation of new control 

inputs. 

iv. Repeat steps ii and iii till the optimal result is 

acquired. 

v. Use the first element in the optimal control input 

vector as the real control input to the plant. 

vi. Go to the next series, and repeat steps i until v. 

 

Neural network predictive control is a control method that 

finds the control input by optimizing a cost function subject 

to constraint.  The cost function used to calculates the 

desired control signal by using a model of the plant to 

predict future plant output [9], [10].     

 

A fundamental part of this method is the actual optimization 

problem that obtains future control inputs by minimizing a 

cost function subject to constraints on the system.  

Typically, the cost function, J consists of the error between 

the reference trajectory r and the predicted outputs y in 

addition to the control effort, u.  

                        
 

  

    

              

  

   

            
 
                                      

 

where 

N1   is the minimum costing horizon 

N2   is the maximum costing horizon 

Nu   is the control horizon 

ym   is predicted output of the neural network 

yr     is reference trajectory 

ρ    is the control input weighting factor. 

u   is control signal 

 

When this cost function is minimized, a control input is 

generated that allows the plant to track the reference 

trajectory.  There are three tuning parameters in the cost 

function, which is N1, N2, and ρ. The prediction of the plant 
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will run from N1 to N2 future step.  The bound on control 

horizon is Nu.  The second summation contains a weighting 

factor, ρ that is introduced to control the balance between 

the first two predictions.  The weighting factor act as 

damper on the predicted u(t+1). 

 

 

Neural Network Predictive Control Design of 

DSRV 
 

This section illustrates a simple way of controlling a non-

linear and 4th order system using neural network predictive 

control.  The design procedure utilizes MATLAB® Neural 

Network Predictive Control toolbox and was implemented 

using SIMULINK® version 7.6. The objective of the 

controller is to maintain the depth of DSRV by adjusted the 

stern plane.   

 

Since the neural network plant model is used as training 

controller, so that, the plant should be identified first before 

training the controller and need to re-identify the plant when 

controller training is not satisfactory. 

 

The neural network plant model has one hidden layer and 

the numbers of neurons of this layer is choose to be three 

neurons.  These parameters are obtained by using trial and 

error method. There are two number of delayed plant inputs 

and two number of delayed plant outputs.  The structure of 

neural network plant model is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2- Structure of Neural Network Model 

 

The plant model training begins.  The training proceeds 

according to the training algorithm.  After the training is 

complete, the response of the resulting plant model is 

displayed as in Figure 3 and there also has a plot of 

validation data as shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3- Training Data for Neural Network Predictive 

Control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4- Validation Data for Neural Network Predictive 

Control 

 

All parameters for the cost function, J are obtained by using 

trial and error method.  The control weighting factor, ρ 

choose to be zero, so that the cost function only concern to 

the error between the reference trajectory r(t) and the 

predicted outputs y(t).  The search parameter selects to be 

0.1 for the best performance.  As the search parameter 

decreased, the speed to compute the simulation is increased.  

If the search parameter is too big, then it might miss the 

minimum altogether.  Cost horizon, N2 is selected by using 

trial and error and it can be conclude that, cost horizon equal 

to 8 give the minimum error. 
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Result 
 

The controller is applied to control the depth of DSRV. To 

assess the viability of the method, the system is simulated 

using MATLAB/Simulink.  The controller was firstly 

designed based on mathematical modelling as discussed in 

part 2.  Once the parameters of the controller are identified, 

it was then interfaced with the SIMULINK block diagram.  

The depth performance in term of error and computational 

time are discussed in this section.  The vehicle was 

commanded to dive to the depths of 45 ft to 30 ft and 

continues up to 10 ft and returns to 30 ft.  The depth 

performance for Neural Network Predictive Control was 

discussed in terms of error and execution time. Figure 5 

show the block diagram neural network predictive control 

for deep submergence rescue vehicle (DSRV). 

 

 
Figure 5- Block Diagram Neural Network Predictive 

Control for Deep Submergence Rescue Vehicle (DSRV) 

 

 
Figure 6- Neural Network Predictive Block 

 
Figure 6 shows the window for designing the model 

predictive controller. Figure 7 shows the response of the 

system when the neural network predictive control was 

used. From the figure, the system has been successfully 

stabilized with a zero of overshoot.  In simulation, the 

vehicle was commanded to dive to the depths of 45ft, 30ft 

and 10ft.  From the result, the DSRV plant models manage 

to follow the desired input with good settling time and zero 

steady state error. 

 

 

 

 
Figure 7- The simulation output for depth. 

 

Table 1 shows the depth performance for Neural Network 

Predictive Control in terms of error and execution time. 

 

Table 1-Depth performance for Neural Network Predictive 

Control in terms of Computation Time, Sum Square Error 

(SSE), Integral Absolute Error (IAE), Integral Time 

Absolute Error (ITAE). 

Item Performances 

Computation Time 452.10 s 

Sum Square Error 

(SSE) 
          

Integral Absolute Error 

(IAE) 

1332 

Integral Time Absolute 

Error (ITAE) 
          

 

From the table it can be seen that the depth response of the 

neural network predictive control achieves a good transient 

and steady state performance. But in term of execution time, 

neural network predictive controller gives quit slow 

response.  This observation is consistent with the fact that 

neural network predictive controller use only first element 

of input trajectory applied as the input signal to the plant. 

Thus, the output measurement, prediction and input 

trajectory determination are repeated for the whole cycle. 

 

Comparison with PD controller and Fuzzy 

Logic Controller 

 
The depth response for Neural Network Predictive Control, 

PD controller and Fuzzy Logic Controller (FLC) can be 

depicted as shown in Figure 8. The set point is varied for a 

given time of 480 seconds. The simulation shows that, all 

three controllers give a zero steady state error and zero 

overshoot. However, neural network predictive control gives 

better performance in term of the transient response. As we 

can see in Figure 9, Neural Network Predictive Control 

gives faster settling time and rise time, followed by PD 

controller and the last one is followed by Fuzzy Logic 

Controller. 
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Figure 8- Comparison with FLC controller and PD 

controller 

 

 
Figure 9 - DSRV with Neural Network Predictive 

Controller, PD Controller and Single Input Fuzzy Logic 

Controller 

 
The above simulation results demonstrate the comparable 

steady state performance. The performance indexes are 

summarized in Table 2. From the table it can be seen that 

the depth response of the neural network predictive control 

achieves a better transient and steady state performance than 

PD controller and FLC. For all three different types of error 

measure, neural network predictive control gives the 

smallest error. For example, neural network predictive 

control gives 1332 of integral absolute error (IAE), PD 

controller gives 2014 of IAE and FLC gives IAE of 2647. 

For fuzzy logic controller, the transient response is obtained 

after a lengthy complex tuning processes of fuzzification, 

defuzzification and inference for 49 rules. 

 

 

Table 2- Comparison results 

 
 
An advantage of FLC over other controllers is the 

computational time which is the time required to compute 

the simulation. Table 3 shows the comparison of 

computational time between neural network predictive 

controller, PD controller and single input fuzzy logic 

controller. It can be observed that FLC is faster than PD 

controller and neural network predictive controller is the 

slowest between them. 

 

This observation is consistent with the fact that neural 

network predictive controller use only first element of input 

trajectory applied as the input signal to the plant. Thus, the 

output measurement, prediction and input trajectory 

determination is repeated for the whole cycle. On the other 

hand, FLC only required a simple look-up table. 

 
Table 3 – Computation results 

 
 

Conclusion 
 

The Neural Network Predictive Control has been 

successfully designed and implemented for the deep 

submergence rescue vehicle system.  The depth performance 

in term of error and computational time are observed in this 

paper. The result clearly shows that Neural Network 

Predictive Control gives good response for steady state 

performance but need longer execution time to complete the 

simulation. 
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