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A perforate is often used in practical engineering noise control to reduce sound radiation from

a vibrating structure. This paper presents a prediction model to quantify this effect using el-

ementary sources which can take account of the hole size and distribution across the plate

surface. The model is based on discretization of the Rayleigh formula where a plate set in an

infinite rigid baffle is divided into array of elementary source. A matrix of acoustic impedance

as a function of acoustic pressure due to motion of the corresponding elementary source and

other surrounding sources is assembled. The total sound power is determined from the sum-

mation over the power contributions from all elementary sources. The results show that the

radiation efficiency reduces as the perforation ratio is increased or the hole size is reduced.

1. Introduction

Perforated plates are frequently found in applications where such structures are used for reduc-

ing sound radiation, for examples the safety guard enclosures over flywheels or belt drives and the

product collection hoppers. Such perforates are known to be capable of achieving considerable noise

reduction. However, until recently, models to calculate their radiated sound are lacking.

Fahy and Thompson1 developed a model of radiation by plane bending waves propagating in

an unbounded plate with uniform perforation which they used to calculate the radiation efficiency

of a simply supported rectangular plate. It is assumed that the plate is effectively mounted in a

similarly perforated rigid baffle, which limits its usefulness. Takahashi and Tanaka2 calculated the

radiated power of a one-dimensional perforated panel with infinite length under a point force loading.

Putra and Thompson3 proposed a model to calculate the radiation efficiency of a perforated plate by

extending Laulagnet’s model for radiation from unbaffled solid panel4 to include the impedance of a

distribution of holes.

These established models use the assumption that the array of holes can be replaced by a uni-

form acoustic impedance at the suface of the plate. Therefore the model gives no information regard-
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ing the position of holes and the distance between holes. In this paper, an alternative approach is taken

based on elementary sources. In principle, the concept is similar to the models of Vitiello et al.5 and

Cunefare and Koopman6 which used discrete elementary radiators to replace a continuous radiator. A

continuous baffled source can be modelled by replacing it with an array of point monopole sources.

In the same way, a perforated plate set in a rigid baffle can also be modelled by an array of sources,

some representing the plate and others the holes.

2. Governing equations

2.1 Discrete version of Rayleigh integral

The well-known Rayleigh integral7 can be used to calculate the sound pressure p at any point

of observation x due to a vibrating plate on the assumption that it is set in an infinite rigid baffle. The

equation can be written as

p(x) = −2

∫

s

G(x|x0)

(

∂p(x0)

∂n

)

S

dS (1)

where x = (x, y, z) and S denotes the surface area of the plate (assumed to lie in the xy-plane). A

time dependence of ejωt is assumed implicitly, where ω is the circular frequency and t is time. G
is the free-field Green’s function, which is the sound pressure contribution at x due to a unit point

monopole source at x0. This equation can be written as

p(x) =
jρck

2π

∫

s

vp(x0)
e−jkR

R
dS (2)

since ∂p/∂n = −jρck vp and G = e−jkR/4πR where R = |x − x0|, vp is the normal velocity

amplitude of the plate, ρ is the air density, c is the speed of sound and k = ω/c is the acoustic

wavenumber.

The Rayleigh integral requires that the normal velocity vp is known over the whole plate surface

area. For bending of a rectangular plate with dimensions a× b and assuming simply supported edges,

the velocity can be written as the sum of modal contributions given by

vp(x0) =
∞
∑

m=1

∞
∑

n=1

umn sin
(mπx0

a

)

sin
(nπy0

b

)

(3)

where umn is the complex velocity amplitude of mode (m,n). For a point force excitation at (xe, ye)
and at frequency ω, it is given by8

umn =
4jωF

[ω2
mn(1 + jη)− ω2]M

sin
(mπxe

a

)

sin
(nπye

b

)

(4)

where F is the force amplitude, η is the damping loss factor, M is the plate mass and ωmn is the

natural frequency given by

ωmn =

√

B

ρph

[

(mπ

a

)

2

+
(nπ

b

)

2
]

(5)

where ρp is the plate density, h is the plate thickness and B = Eh3/(12(1− ν2)) is the plate bending

stiffness, in which E is Young’s modulus and ν is Poisson’s ratio. Note that the effect of perforation

on the plate bending stiffness and mass has been neglected. Discretizing the Rayleigh integral, Eq. (2)

can be re-written as

p(x) =
jρck

2π

∑

s

vp(xs)
e−jkR

R
dxdy (6)
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where R = |x − xs| and xs is the centre of source position s. However for field positions x on the

surface (x = xr) the integrand is singular for r = s. To solve the integral for element r, another

approximation corresponding to the pressure distribution on the plate surface is needed. Morse and

Ingard9 give the total force per unit area (pressure) acting on a rectangular piston with small aspect

ratio moving with uniform velocity Un. For a plate of dimensions a × b, where b ∼= a, the radiation

impedance is given by

p

Un

=
ρck2

16

(

a2 + b2
)

+
j8ρck

9π

(

a2 + ab+ b2

a + b

)

, ka ≪ π (7)

Applying this to the elemental source dS and assuming for simplicity a square piston, i.e. a = dx =
b = dy, this reduces to

p

Un

= ρc

(

k2dx2

8
+

j4kdx

3π

)

, kdx ≪ π (8)

Combining this with Eq.(6) the Rayleigh integral can be written in the form

p = MU (9)

where M is an impedance matrix with elements

Mrs =























jρck

2π

(

e−jkRrs

Rrs

)

(dx)2, r 6= s

ρc

(

(kdx)2

8
+

j4kdx

3π

)

, r = s

(10)

and p and U are vectors of pressure and velocity at each element.

2.2 Impedance matrix including perforation

Consider an array of holes on a plate, as shown in cross-section in Fig. 1. Each hole can be

considered to be an acoustic source with volume velocity ShUh where Uh is the average fluid velocity

in the hole and Sh is the area of the hole. The pressure at any point on the plate surface can be written

as a sum of the pressure contributions from all sources representing the plate and the holes according

to Eq. (9). The matrix M can be rearranged to give

M =

(

Mp−p Mp−h

Mh−p Mh−h

)

(11)

where p− p refers to the pressure at plate locations due to plate sources, p− h refers to the pressure

at plate locations due to hole sources, etc. The pressure and velocity can similarly be partitioned into

components corresponding to the plate and the holes giving

{

pp
ph

}

= M

{

Up

Uh

}

(12)

where pp and Up are the acoustic pressure and velocity at the plate location, and ph and Uh are the

same but for the hole location. The pressure at any point on the plate surface can be written as a

sum of the pressure contributions from all sources representing the plate and the holes according to

Eq. (9).

The matrix M can be rearranged to give

M =

(

Mp−p Mp−h

Mh−p Mh−h

)

(13)
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Figure 1. Schematic view of analytical model of an array of discrete (monopole) sources for calculating the

sound radiation of a perforated plate

where p− p refers to the pressure at plate locations due to plate sources, p− h refers to the pressure

at plate locations due to hole sources, etc. The pressure and velocity can similarly be partitioned into

components corresponding to the plate and the holes giving

{

pp
ph

}

= M

{

Up

Uh

}

(14)

where pp and Up are the acoustic pressure and velocity at the plate location, and ph and Uh are the

same but for the hole location.

2.3 Impedance of the holes and the acoustic power

It is assumed that the plate is located in an infinite baffle with a semi-infinite halfspace of fluid

on both sides. The difference in the local pressure between the upper and lower ends of the hole

drives the fluid through the hole (the pressure at the lower surface is −ph). These pressures, in turn,

are modified by the fluid flow through the hole.

The sound power radiated by the plate can be expressed as the summation over the power

contributions from all discrete elementary sources. Solving the above equations for Up, the sound

power can thus be given by

W =
1

2
ℜ
(

∑

ppU
∗

p +
∑

phU
∗

h

)

dS (15)

where ∗ indicates complex conjugate.

Finally, the total radiation efficiency of the perforated plate can be written as3

σ =
W

ρcab(1 − τ)
〈

v2p

〉 (16)

where τ is the perforation ratio and
〈

v2p

〉

is the spatially-averaged mean square velocity across the

total surface of the plate given by

〈

v2p

〉

=
1

2ab

∑

|Up|
2

dS (17)

Note that the inclusion of (1 − τ) in Eq. (16) is to normalise the radiated power to the area of

the plate. However, it is still assumed here that the bending stiffness of the panel is not affected by

the perforation.

3. Accuracy of the result

Firstly, the calculation is made for a solid plate to investigate the accuracy of the result with

respect to number of discrete sources employed. The number of the sources is determined by the

sample spacing dx and dy. The results are given for a rectangular aluminium plate having dimensions

0.65× 0.5× 0.003 m, density ρp = 2700 kg/m3, Young’s modulus E = 7× 1010 N/m2 and damping
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Figure 2. Radiation efficiency of a baffled plate from discrete monopole sources for different grid sizes: · · ·
dx = 40 mm, −− dx = 20 mm, − · − dx = 15 mm and — dx = 10 mm (0.65 × 0.5 × 0.003 m aluminium

plate with η = 0.1).

loss factor η = 0.1. The point force is applied at (−0.13a,−0.1b) where the origin (0,0) is at the plate

centre. The calculation is performed up to 10 kHz involving all modes with m ≤ 25 and n ≤ 20.

The radiation efficiencies for different source spacings (with dx = dy) are shown in Fig. 2.

As expected, the choice of dx affects the results at high frequency. For dx = 20 mm, 15 mm and

10 mm, the curves collapse to one another up to roughly 6 kHz before they separate at higher fre-

quencies. Among these spacings, there are actually small discrepancies below 6 kHz, but these can

be considered negligible.
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Figure 3. Comparison of radiation efficiency of a baffled plate from discrete monopole sources (—) with the

FFT approach (◦)10 (0.65 × 0.5× 0.003 m aluminium plate with η = 0.1).

Fig. 3 presents a comparison of the radiation efficiency result from Fig. 2 for spacing dx =
10 mm with that obtained using the FFT approach10 for the same plate sample and forcing location. A

very good agreement can be seen except at very low frequency, where the result of the FFT approach

is known to suffer bias errors.10 Note that the numerical calculation in the FFT here uses the same

sample spacing dx = 10 mm. In the remaining sections, the sample spacing dx = dy = 10 mm is

used in the calculations.
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4. The effect of perforation

For the perforated plate, the position of the holes is chosen in relation to the array of the dis-

crete sources. Figs. 4(a) and 4(b) respectively shows examples of the arrangement of holes for con-

stant hole diameter of 40 mm with different hole numbers (different perforation ratios τ ) and conse-

quently different hole spacings and for constant perforation ratio of 10% with different hole size to

see the effect of hole density (number of holes per unit area). The point force excitation is located at

(−0.054a,−0.08b).

The radiation efficiencies are plotted in Fig. 5. Figure 5(a) shows that the level reduces as the

perforation ratio increases.3 This is because the counterflow of air through the holes reduces part of

the volume sources on the plate surface in the vicinity of the holes, which then reduces the radiated

sound. As for the perforated unbaffled plate case,3 the sound reduction due to perforation is constant

in the fundamental mode region (< 50 Hz). This effect reduces when the frequency approaches the

critical frequency. The sound radiation can also be seen to be reduced by decreasing the hole size (i.e.

increasing the hole density) as in Fig. 5(b).

In Fig. 5(b), with the smaller hole diameter of 15 mm, a reduction of 15 dB can be achieved at

low frequencies with only 10% perforation ratio compared with the corresponding result in Fig. 5(a)

with 31% perforation. Hence a high density of small holes is more effective than a low density of

large holes.
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Figure 4. Discrete sources on a rectangular plate (0.65 × 0.5 m) with arrangement of holes for constant

hole diameter do = 40 mm and different perforation ratios: (a) τ = 6%, lx = 130 mm, ly = 160; (b) τ = 22%,

lx = 80 mm, ly = 70 mm and for constant perforation ratio τ = 10% and different hole diameters: (c) do = 59

mm, lx = 160 mm, ly = 160 mm; (d) do = 32 mm, lx = 90 mm, ly = 80 mm (×: excitation location).
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(b)

Figure 5. Radiation efficiency of a perforated baffled plate

(0.65 × 0.5 × 0.003 m, η = 0.1) from discrete monopole sources for (a) constant hole diameter do = 40 mm:

—τ = 6%, −−τ = 12%, · · · τ = 22%, − ·−τ = 31% and (b) constant perforation ratio τ = 10%: —do = 83

mm, −−do = 59 mm, · · · do = 32 mm, − · −do = 15 mm (—(thick) unperforated).

5. Conclusions

A model of sound radiation from a perforated baffled plate has been proposed which is devel-

oped by dividing the plate and the holes into elementary monopole sources. The contribution of the

sources and their influence on each other is assembled into an impedance matrix. It is found that the

radiation efficiency reduces as the perforation ratio is increased or the hole size is reduced, consistent

with earlier results.

The proposed model avoids the assumption of a continuous layer of impedance as the inter-

action of the holes with the sound field is analysed individually and the holes are now arranged at a

known separation distance. It is therefore of interested to further investigate the effect of hole distance

particularly on the frequency limit of sound reduction.
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