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Abstract This paper elaborates upon a musculoskeletal-
inspired robot manipulator using a prototype of the spiral
motor developed in our laboratory. The spiral motors
represent the antagonistic muscles due to the high
forward/backward drivability without any gears or
mechanisms. Modelling of the biarticular structure with
spiral motor dynamics was presented and simulations
were carried out to compare two control methods,
Inverse Kinematics (IK) and direct-Cartesian control,
between monoarticular only structures and biarticular
structures using the spiral motor. The results show the
feasibility of the control, especially in maintaining air
gaps within the spiral motor.

Keywords biarticular manipulator, inverse kinematics
control, work space control, spiral motor, musculoskeletal

1. Introduction

Over recent decades robots have been inspired by the
motion of living things, i.e., humans and animals [1] [2].
Various structures of robots have been designed, from
industrial robotic manipulators to humanoids and mobile
legged robots for different purposes. Success stories
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include ASIMO, DLR, Big Dog and many others.
However, most designs are implemented by using serial
joint servos at the end of each limb, resulting in large joint
actuators at the base to support the desired large
forces/torques (i.e., end-effector output, friction). In the
end, the weight and size of the actuators contribute
largely to the overall specification of the robot. In
addition, difficulties in actuation, for example, backlash
and low drivability/low compliance, add to problems in
controlling such structures.

On the other hand, the anatomy of the musculoskeletal
human body provides new insights into the design of
robots. By looking closely at the structure of the
human/animal musculoskeleton, the joint/hinges are not
directly actuated, but affected by the antagonistic
contraction or extension of the muscles connected to the
bones. The muscles can be clustered into monoarticulars
(single joint articulated) and biarticulars (two joint
actuated). The dynamic domain of the human arm
muscles (from shoulder to elbow) have been studied in
[3] [4] [5]. The study in [3] applies the Hill’s muscle model
and attempted to analyse different damping and elastic
properties, and later applied task position feedback
control to monitor position, velocity and accelerations in
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joint and taskspace. On the variation of muscle
positioning, the potential fields produced by the internal
forces are affected and also the speed of convergence of
motion. By means of simulation, the human reaching
movements were achieved without inverse dynamics or
optimal trajectory derivation.

Some designs that include biarticular muscle actuation
can be referred to in [6] and [7]. These designs use rotary
motors, belts and pulleys to realize biarticular muscle
torques. In [6], stiffness and dynamics
feedforward control was applied. The lancelet (ancestor
of the vertebrae) has inspired [7] using
mechanisms to  realize a  virtual triarticular
sigmoid/swimming motion with the properties of AC
motor  control.  These  designs include the
biarticular/triarticular actuation, but the structures are
maintained as serial or open-link mechanisms. Another
different design was shown in [8], whereby the rotary
motors are placed at the base and the joint angles are
pulled by wires. Feedforward control was also applied to
resolve force redundancy. Other designs of legged
musculoskeletal mechanisms can be found in [9] [10] [11].
These structures utilize the pneumatic rubber muscles as
actuators, possibly the closest candidate to the human
muscle. These muscles extend or contract, depending on
the amount of air pressure supplied. The small size of the
actuators enables the design of the legs to be space saving,
as the actuators are placed closely or attached to the link.
Jumping and hopping motions successfully
implemented, but because of the use of air supply, these
structures are less mobile for autonomous operations.
Also, pneumatic muscles are difficult to control and
inaccurate due to their nonlinear elasticity properties [12].
A combination of pneumatics/cables is also shown in [13].

inverse

similar

were

The actuator that we propose for musculoskeletal
actuation is the spiral motor [14]. It is a novel high thrust
force actuator with high forward/backdrivability. From
the first prototype, the internal permanent version was
developed and currently the helical surface permanent
magnet prototype is available [15].

2. Biarticular Manipulator Kinematics

An example of the biarticular muscle structure can be
found in the human arm, consisting of antagonistic pairs
of monoarticular (muscles affecting one joint) and
biarticular muscles (muscles affecting two joints). By
using the spiral motor, the antagonistic pair of flexor and
extensor can be combined by using only one spiral motor,
thus reducing the number of actuators from the shoulder
to the elbow to only three actuators, instead of six. The
combined flexor/extensor planar
manipulator of the biarticular structure is shown in
Figure 1.

muscles of the
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Figure 1. Simplified diagram and manipulator design

The main angles are the shoulder angle (g:) and elbow
angle (q2). Based on the simplified diagram in Figure 1
and using trigonometric identities, the relationship of
muscle lengths, Ini with joint angles g1 and g2 is derived (a:
and a: are link lengths).

Ly = Jal% + al? + 2alyal, cos q4

Lo = Jblf + blZ + 2bl,bl, cos q,

L= al, + al3, + a? + 2alz,a, cosq, + (1)
m3 2als,a, cos q, + 2alz als, cos(qq + q3)

Distances between connection lengths of the
monoarticulars from the joint angles are labelled aly, al,,
bl; and bl, while connection lengths of biarticular are
als; and al;,. The extension/contraction of monoarticular
muscles affect the respective joint angles to which they
attach, ie., I, affects the joint angle q; (shoulder) and
I, affects g, (elbow). However, the biarticular muscle lns

is redundant because it affects both g, and g5.
Based on (1), the relation between muscle velocities, I,
and joint velocities, g is given as;

lm :

. D 2
1{12 - ]lmq q'z ] ( )

lm3

Where Jimq
obtained from partial derivatives of (1) with respect to
shoulder and elbow angles, shown in (3).

is the muscle-to-joint space Jacobian,

dq1  0qz
= Olmz  Olma X
ma = 19q, oq; @
Olms  Olms
dq1  0qz
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where
0l alyal,sin(qy) 0l
= — ; = O;

dq, Im1 09, ]

m2 _ . Oz _ _bl1blZSl n(Qz)_
0q, ' aq; lma '
Olms _ —alsya, sin(qy) — alzyalsy sin(qy + q2)
9q, lms '
Olms  —alsay sin(qy) — alsyals; sin(qy + q2)
0q; 3

It needs to be highlighted that this Jacobian is different
from that of [6], because in the mentioned reference it is
not structure-dependent. In our case, this Jacobian varies
with the connection points (i.e., aly,aly, bly,bly,
alz;and als,). Next, the equation relating joint torques, T
(vector of shoulder and elbow torques) and muscle forces,
F 1, (vector of muscle 1, muscle 2 and muscle 3 forces) can
be described in (4) as;

F im1
F im2 (4)

F Im3

[zl] = ]lqu

Also, the equation relating the joint torques, T and the
end-effector forces, F, for a 2R planar manipulator is;

] =0 ] ®

where ] is the 2R planar Jacobian matrix from task space
to joint space which contains the following elements;

—azsin (q; + qz)

[—a1 sin(qy) — azsin (q; + qz)
azcos (41 + qz2)

ay cos(qy) + azcos (q; + qz)
(6)

The equation relating to the end-effector forces, F, (vector
of end-effector forces) and the muscle forces, Fy,, can be
determined as follows;

Fex]

-1 - Flml
Fey =] ]lmq Fim2 (7)

F im3

From Equation (6), the end-effector forces plot of the
biarticular structure can be obtained. Figure 2 shows the
static end-effector forces of structures with biarticular
forces and the structures without. The forces applied for
b1 [N], lmz [N] and L3 [N] are;

—100[N] < Fypy < 100[N] )
=100 [N] < Fynp < 100[N]
—100[N] < Fyn3 < 100[N]

The end-effector output force produced by biarticular
forces shows a hexagonal shape which is more
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homogenous than the tetragonal shape of the end-effector
forces without biarticular actuation. This is one of the
many advantages of biarticular manipulators compared
to monoarticular actuation only.

y force (N)

—— with biart
—— without biart

x force
L
I
30N

=30N

End effector
(tool) position

=30N

Figure 2. Cartesian view of end-effector forces for structures
with (red) and without (blue) biarticular muscle forces

3. The Spiral Motor

Being specifically developed for musculoskeletal robotics,
the third prototype spiral motor's main feature is its
direct drive high thrust force actuator with high
backdrivability. This three phase permanent magnet
motor consists of a helical structure mover with
permanent magnet and stator. The linear motion is
derived from the spiral motion of the mover to drive the
load. In addition, the motor has high thrust force
characteristics because the flux is effectively utilized in its
three dimensional structure [14]. This spiral motor does not
include ball screw mechanisms, thus friction is negligible
under proper air gap (magnetic levitation) control.

Figure 3. Spiral motor parts (a) Neodymium magnet (b) Silicon
steel stator yoke (c) Mover attached with magnet and Teflon
sheet (d) Wound and assembled half stator
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Figure 4. Spiral motor illustration

As seen in Figure 4, there is a small air gap between the
mover and stator. This small distance is ideally 700 um
between the Teflon sheet of the mover (at centre position)
and the stator yoke. This air gap displacement, x;, is
related to the linear displacement, x, and angular
displacement, 0, in (11). If the gap displacement is
maintained, i.e., the surface of mover and stator are
untouched, magnetic
Simultaneously, by a vector control strategy, the angular
control provided by g-axis currents will give forward or
backward thrust while d-axis currents control linear
displacements and magnetic levitation, as shown in the
plant dynamics of the spiral motor in (9) to (12);

levitation is realized.

Mg % = Kply + Kyxg — dus )

Js 6 =K1, — h(Kelg + Kyxg) — dg (10)

Xy =x—ho (11)

h=2 12)
21

where M # and J; § denote spiral motor force and torque,
Kgx, represents the force generated during magnetic
levitation, Ky is force constant and K; is torque constant.
dys and dg are force and angular disturbances. Gap
displacements, x,, are related to linear, x, and angular
displacements, 6 , by the lead length, [, (12). One
revolution of 8 would result in a displacement of length
L, if the gap displacement is zero.

Figure 5. Assembled short-length spiral motor
3.1 Direct Drive Control of the Spiral Motor

Assume u,, and uy are control inputs for

&ap
displacement and angular displacement [15], which will

match its respective acceleration terms;
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Uxg = Hpg (g0 — %) + Kag (g0 ‘_’59) . (13)
Ug = Orer + Kpt (Gref - 9) + Kt (Brep-0) (14)

where x4, is the gap reference and x;, is the gap velocity

reference. K, g, Kqg, Kp: and Ky, are PD gains for gap and

angular positions and velocities. Also, the relation
between linear and angular acceleration is known as;

X =x,+ ho (15)

By replacing the linear acceleration term in (9) with (15),
force dynamics of (9) can also be expressed as;

M (%, +h6) = Kelg + Kyxg — dys (16)

Replacing the acceleration terms with control inputs
(subscript n denotes nominal value);

My (uyg + httg) = Kpplares + Kgnxg — dys  (17)

Thus, the d-axis current reference (that will be tracked by
a PI current controller) will have the following form;

1 ~
Idref = K_fn (Mn(uxg + hue) - Kgnxg +dy)  (18)

By applying the same technique to the torque dynamics
in (9) for the g-axis current reference;

Jnte = Kilgrer — h (Mp(uyy +hug) +dys )+ dp - (19)
1 ~ ~
Iqref = K_T(]n ug T h(Mn(uxg + hue) + dxs) +dg) (20)

and disturbance for linear displacement and angular
displacement (in Laplace domain) are estimated as;

dys = Sf;x (Klares + Kyxg — sMy%) (21)
dg = Sf—zg (Kolgrer — b (Kplares + Kyxg) — s/n6) (22)

where g, and gy are the gain of the disturbance observer
for linear and angular displacements. Until this point,
direct drive control can be achieved at gap values of 0
mm. But due to disturbances (ie., manufacturing
accuracy of mover and stator), the current at 0 mm is not
zero. Therefore, a neutral point (zero power) that induces
zero currents for d-axis current is desired and low power
control is realized as follows;

My (%5 + h6) = Kp (0) + Kgxg — dys (23)
My (350 + hB) = 0+ Ky(xg0) — dus
_ Mp(kgo+hB)+d,,
ET

As acceleration terms are usually affected by noise (due
to differentiation), for initial testing, we simplify (24) to
become;

xgo =2 (24)
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Figure 6. Direct drive experimental results with zero d-axis current control (a) Forward drive (b) Gap displacements (red denotes zero
d-axis gap reference) (c) Currents (d) Reverse drive (e) Gap displacement (f) Currents

Experiments for direct drive forward and reverse motion
were carried out using the monoarticular spiral motor
with a stroke of 0.06 m. TMS320C6713-225MHz were
used for data collection and control. Two DC supplies for
the forward and backward inverters were used. At first,
the direct drive control was applied to 0 mm (x position).
We regard this as the initial gap stabilization phase. This
is required because once magnetic levitation is realized,
then forward and backward motions can be performed
smoothly. If magnetic levitation and forward/back
motions are performed simultaneously, the gap might not
be maintained and damage could be inflicted on the
stator and mover. After d-axis current stabilized at
around 0 A, the forward reference was given. Then after
the current stabilize at 0 A again, the reverse reference of
0 mm was applied. Figure 6 shows the experimental
results for direct drive forward/reverse motion with zero
d-axis current control (after gap initialization). Note that
n [15], direct drive control was performed without zero
d-axis control.

4. Singularity/manipulability of Biarticular Structure
This kinematic parameters can be used to determine the

work space of the manipulator. The parameters of the
three spiral motors are shown in Table 1.

Spiral Motor Type
Parameters Monoarticular Biarticular
Weight (kg) 1.5 2.3
Stroke (mm) 60 70
Extended length (mm) 256.5 380.5
Contracted length (mm) 196.5 310.5
Estimated max. force [N] 100 150

Table 1. Spiral motor specifications for muscles
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The forward kinematics (end-effector position) of a 2R
manipulator can be calculated by using the following
equation (x and y are Cartesian coordinates);

(25)
(26)

x = ay cos(qy) + az cos(q; + qz)
y =aysin(qy) +azsin(q; +qz)

For the biarticular manipulator, kinematic limits are due
to the maximum (a,, §,) and minimum length (a,, 5;) of
the actuators, shown as;

(27)
(28)

a1 <lni,lme <y
By Slnz =B,

By referring to Equation (1), joint angle ¢; is bounded to
the connection lengths al; and al,. The same applies for
monoarticular [, . For us, we chose al; =bl; and

al, = bl, (same arrangement for both monoarticulars).
Then, the ranges of allowable angles for g, and g, are;

2_
cos™t (azv—u) < q1,92 <cos (29)

—1(@f-w
v

CONSTRAINT POINTS aly,

2\
bl, ’b(&}e
o8
a\‘o

q,(mono2 angle)

\

(shoulder anglﬂ

g;(monol angle)

Figure 7. Closed-kinematics of biarticular manipulator
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Figure 8. Manipulability plots for (a) ali=0.14m, (b) ali=0.16m, (c) ali=0.18m and (d) ali=0.20m for similar elbow monoarticular
connection (al; = bly). Biarticular connections (als1 and als2) set at 0.06 m

where

u=al?+al v = 2alal,

This implies that the minimum lengths of monoarticulars
incur maximum angles and vice versa. Thus, considering
biarticular length limits, manipulability [16] can be
plotted. Figure 8 shows the manipulability plots for
different connecting points of monoarticular muscles. The
shape of the angle limits is due to biarticular and
monoarticular length limits. It can be seen that the further
the connection points of monoarticulars are from the
shoulder angle, the larger the work space.

Manipulability was obtained by finding the determinants
of the musclejoint Jacobian and end-effector-joint
Jacobian terms. Dark blue represents low manipulability
regions, and at zero manipulability, singularity is
induced. Red represents the high manipulability region.
The inverse kinematic singularity of planar 2R
manipulator [24] can be seen at the elbow angle of 0
radians. This is also true for the biarticular manipulator.
In addition, due to muscle Jacobian terms, singularity is
also evident at the shoulder angle of 0 radians. Some
examples of singularity and manipulability poses for the
biarticular manipulator are illustrated in Figure 9.

] base

3 link

== monoarticular
== biarticular

(a) Singular Position 1

(b) Singular Position 2

(d) High manipulability

(c) Medium manipulability

Figure 9. Examples of singular and manipulability poses for
biarticular structure.
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In the case that either shoulder or elbow monoarticular
becomes fully extended, the shoulder/elbow angle
becomes zero, and singularity is observed. However, both
angles could not become zero simultaneously, due to
biarticular length limit (refer Figure 7).

Higher manipulability poses are induced when lengths of
muscles are short, and at near minimum lengths of
muscles (or maximum angles), maximum manipulability
region is observed.

If the connection points of shoulder and elbow
monoarticulars are different, the following results of
reciprocal condition of the Jacobian (another method to
determine ill-condition [25]) is shown in Figure 10 and

Figure 11;

q1 angle(rad)

0 0.5 1 1.5 2
q2 angle(rad)

(a)

1.5

g1 angle({rad)

0-5 ...................

0 0.5 1 1.5 2
q2 angle(rad)
(b)
Figure 10. Reciprocal condition plot for al; # bl;, al; = 0.2 m
bl; = 0.14 m; (a) al3;, = alz; = 0.06 m (b) al3; = alz, = 0.10 m
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q1 angle{rad)

1.5 2

0 0.5 1
q2 angle({rad)
(a)

=1
i
T
=)
c
o
T

0.5

0

0 0.5 1 1.5 2
q2 angle(rad)

(b)
Figure 11. Reciprocal condition plot; al; # bl;, al; = 0.14 m and
bl; = 0.2 m; (a) al3; = alz, = 0.06 m (b) alz; = al;, = 0.10m

As seen in Figure 10 and 11, if the value of al; or bl; is
small, the corresponding shoulder/elbow angle becomes
narrow and vice versa. Also, the further the biarticular
muscle connection point is from the hinges, the smaller
the work space becomes. By increasing the biarticular
connection distance, ill-condition is further avoided, but
with less work space.

Figure 12 shows the reciprocal condition plot with
different connection points of the biarticular muscle. It is
obvious that by connecting the end of each side of the
biarticular muscle differently, significant changes to the
work space and reciprocal condition is seen.

5. Biarticular Plant Dynamics Modelling

Most planar 2R robots are serial/open-chain manipulators.

There is much research on control of these 2R
manipulators. Modelling of unconstrained open-chain
manipulators uses Ordinary Differential Equations (via
Lagrange (LE) or Newton Euler (NE) formulation), while
closed-chain manipulators require Differential Algebraic
Equations due to constraint equations [17]. Constraint
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points are virtually cut open and LE formulation was
used to obtain mass, gravity and centrifugal matrices.
Equation (29) depicts the generalized equations of motion
of a closed-chain manipulator;

Mc(@Dd+CqPq+ 6@ =t+Jia+ ] dyy (29

q1 angle{rad)

0 0.5 1 1.5 2
q2 angle(rad)

(@)

A — — —

a1 angle(rad)

0 0.5 1 1.5 2
qZ angle({rad)

(b)

q1 angle{rad)

0 0.5 1 1.5 2
q2 angle(rad)
(©
Figure 12. Reciprocal condition plot; al; =bl; =0.2m; (a)
alz; = 0.06 m, al3, = 0.10 m (b) alz; = 0.08 m, al;, = 0.06 m; (c)
al; = bl; = 0.14m aly; = 0.06 m, al;, = 0.10 m
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where q denotes joint angle/muscle length vector, 4 is the
vector of constraints, M.(q)is the mass matrix, C(q,q ) are
centrifugal/Coriolis terms, G(q) are gravity terms, T are
generalized forces/torques, JIA are the constraint forces
(from the closed-loop kinematics). The term JT d,,
represents disturbance forces applied. J7 is transposed
from (6) and d,, is a vector of x and y Cartesian
disturbance force. We will show the constraint-related
terms. As mentioned, others can be obtained via LE, NE
or other dynamics formulation.

Constraint equations (from trigonometry) are derived as;

qe cos(q3) —aly — al, cos(qq)
qe sin(qz) — al; sin(qy)
q7 cos(qy) — bly — bl; cos(qz)
q7sin(qy) — bly sin(qz)
qs cos(qs) — alz; — a; cos(qy) — alzycos (q; + ) =0
qs sin(qs) — aqsin(qy) — alz, sin(qy + q2) =0

Il
cocoo

Also, the relative acceleration at the constraints are zero
(Je,J. are the constraint Jacobian and Jacobian derivative),

Jed+J.q=0 (30)

The constraint Jacobian (unmentioned terms are zero) is
described as;

Jeir - Jeis
]c = [ : : :| (31)
Jes1 - Jees
Jeur = alysin(qy); Jeiz = —qesin(qs) ;
Jete = cos(qs); Je21 = —alycos(qq);
Je23 = qecos(qsz); Je2e = sin(qs);
Jesz = blysin(qy); Jeza = —q75in(qs);
Jezz = co0s(qa); Jeaz = —blycos(qy);
Jeas = q7c05(q4); Jeaz = sin(qa);
Jes1 = alszsin(gq + qz) + agsin(qy);

Jesz = alzpsin(qq +q2);

Jess = —qgsin(gs); Jess = cos (qs);
Jee1 = —alzz cos(qy + qz) — ajcos (q1);
Jeez = —alszcos(qr + q2);

Jees = qgcos(qs); Jees = sin(qs);

The constraint Jacobian derivative is derived as;

. Jair - Jais
]C = [ : : ] (32)
Jaer - Jdes

Jaun = alycos(q)q,
Ja1z = —qe c05(q3)qs — sin(qs) qe;
Jate = —sin(qs) qs; Jaz1 = alysin(qq) 4;
Jazz = —qesin(qs)qs + cos(qs)qe;
Jaze = cos(q3) q; Jazz = bly cos(qy) qa;
Jaza = —q7 c0s(qs)qs — sin(qs) G7;
Jazz = —sin(qs) qa; Jaaz = blysin(qz) qy;
Jasa = —q75in(qs)qs — cos(qa) G7;
Jasz = c0s(q4)qs;

Jas1 = aqcos(qq) g1 + alsa(qy + G2)cos (g1 + q2);

Int J Adv Robotic Sy, 2012, Vol. 9, 156:2012

Jasz = alsz(g1 + g2)cos (g1 + q2);

Jass = —qg cos(qs)qs — sin(gs) gs;

Jass = —sin(gs) gs;

Jae1 = aqgsin(qq) 41 + alsz (G + G2)sin (q1 + q2);
Jasz = alsz(g1 + g2)sin (g1 + q2);

Jaes = —qssin(qs)qs — cos(qs) gs;
Jaes = cos(qs)gs;

By combining these two equations, the following
generalized closed-chain model can be derived;

- e

To include the spiral motor plant dynamics in the
generalized closed-chain model, (33) has to be modified
to the following;

M. 0 _]cT q T_Cq'l']T dxy
0 J 0 [é - o (34)
—Je 00 [la Jeq

The inertia terms from the angular rotation now emerge
Js, 6,74). With this modification, the d and g-axis currents
could also be seen in simulation (refer Equations (9) to
(12)). To visualize the plant model, the dimensions of the
left-hand terms would become;

[Me11 . Mg 00 0 —Jopy —Jeo1] q1
Mgy . Mgg 0 0 0 —Jeg —Jees || 98
0 . 0 J 00 0 . o0 [6
0 = 0 0 J, 0 0 o ||g,
0 w 0 0 0 J5 0 0 g,
_]cll _]cla 0 0 0 0 0 )\1
L —Jc61 —Jees 0 0 O 0 w0 _;\.6_
(35)

The linear acceleration of the spiral motors (i.e., X1, ¥, ¥3)
are equivalent to g, §-, §g and rotational acceleration of
the motors are 6;, 6, 5. After integrating twice, a gap can
then be obtained via (11). /; are spiral motor inertias.

The right-hand terms of (34) would become;

[ ) Ji1 Jaa O 01[dxT]
71 Cll v C].S q1 112 ]22 0 0 [dy]
[3}—[2 R } “1+]0 0 o 0|l o
Tg C81 ng qS : : 0 [ J

0 0 0O 0L o

Krllql - hl(Kflldl + Kglxgl)

Kiylgz — ha(Kpalaz + Kgoxg2)

K‘r31q3 —hs (Kf31d3 + Kg1xg3)
[]d'll ]d_1s i

C11]
ds

]d61 ]d68

(36)
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The unactuated variables are q; to gqs. Thus, its
corresponding 1; to 75 are always 0 (no input
torque/force). tg is the vector of spiral motor torques. 7,4
to Tg (monoarticular 1, monoarticular 2 and biarticular
forces) are given by the following equation;

Te
Ty
Tg

In simplified terms, the plant can be described by (38);

it

6. Work Space Position Control

Kflldl + Kglxgl
= |Kralay + Kyaxgo (37)
Kezlgs + Kgixg3

T— Cq + ] dxy
(38)

Robotic manipulators have been researched extensively;
some of the many examples are torque sensorless control
[18], SCARA manipulator tracking control [19],
feedforward and computed torque control [20] and
position control of constrained robotic system [21].
Previously described in [22] are some approaches (the IK
approach and the Direct Cartesian (DC) approach) for the
general structure of a biarticular manipulator, i.e., not
actuator specific. In [23] other methods were investigated.

In this paper, the generalized work space control [22] is
extended to the specific spiral motor case for the purpose
of viewing the effects on gap and position control with
the addition of Cartesian load disturbance. By
considering a circular task space trajectory, the references
for x and y-axis positions are shown as;

x(t) = A cos(w(t)) + %, (39)
y(®© = Asin(w (1) +yo (40)
w(t) = 2m(1 — cos(t)) 41)

where A is the radius of the circle and x, and y, are x and
y coordinates of the centre of the circle.

From 0 to 0.5 seconds, gap stabilization is performed
without giving any position reference (either in joint
space or work space). This phase is to allow the gap to
stabilize at centre (Omm) position. From 0.5 to 6 seconds,
the position reference of the circle trajectory (5 cm radius)
is given. In addition, Cartesian disturbance on the end-
effector is given between 1 to 3 seconds.

Here we present comparisons of a monoarticular only
actuated structure with that of a biarticular structure by
using the IK approach
(monoarticular control gains, i.e., PD, disturbance observer
cut-off frequencies are identical). Note that for work space
control, zero d-axis current control is not applied.

approach and the DC

www.intechopen.com

5.1 Inverse Kinematics Approach

By using the IK approach [24], joint space trajectories
(elbow/shoulder angles) are obtained from the Cartesian
reference trajectories (x and y);

_ x*+y®—a?-a3
D= T (42)
q, = tan™? I_DDZ (43)
— 1 X _ a, sin(q,)
q; =tan~ tan™ (—a1+az Cos(qz)) (44)

From joint references, muscle kinematics (1) can be used
to obtain muscle references (i.e., length, velocity,
acceleration). X, X, X3 are shoulder, elbow monoarticular
and biarticular spiral motor linear accelerations.

éi6ref = .l'mlref = xlref (45)
Zmzref = x'zref (46)

x3ref (47)

‘77ref =

é1.81“ef lm3re f
The rotational acceleration references are calculated as in

(48) to (50) with X4 =0 (gap references are zero for
non-zero d-axis current control);

X Gore

glref gloh—lsf (48)
x G7re

Oyrer = =207 (49)
x Ggre

93ref g30h—38f (50)

From these references, dg-axis control (refer (13) to (20))
can be constructed for each muscle to generate the forces
(16, T7 Tg) and torques (Tyq, Tgy Tp3) as in (36) and (37).

Cartesian trajectory pgition, velocity, acceleration
xl ly q1 references for 96 497 qs

Inverse Muscle
Kinematics Kinematics q'6 q’7 q"8
2

i Biarticular
T-i Manipulator
1
U
(]

Spiral Motor position, lT0|
gap control (mono1l, |
mono2 and biart)  [i£6;
Equations (13), (18) |}
(20),(36),37) i

Plant,
8 Equation (38)

_____

Observers for
three muscles
Equation (21)
and (22)

Figure 13. IK control for manipulator driven by spiral motors
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In this part, only Y-axis disturbance of 10 [N] is given. The
initial circle trajectory response in Figure 14 shows that the
biarticular structure exhibits better accuracy. Initial errors
due to the gap stabilization can be seen at the near start
position (0.15, 0.53). Then the effect disturbance of 10 [N]
can be seen as the response is deviating from the
reference. Cartesian errors are shown in Figure 15; “‘mono’
denotes monoarticular structure responses while ‘biart’
denotes biarticular structure responses.

0.545
-—reference
——mono structure
0.54 —— biart structure
E o535
-
0.53
.52 . . .
0525 0.145 0.15 0.155 0.16
X (m)

Figure 14. Close-up view of circle trajectory responses from
monoarticular structure and biarticular structure

x10°

-0
E
§ -1
oo, ===mono X error |
===mono y error
-3 —biart x error |
—biart y error
_4 L L L L
0 1 2 3 4 5 6

time (s)

Figure 15. Cartesian errors for the IK approach

E
o
8 ===monho gap1
2 ===mono gap2 |
== Dbiart gap1
3 ==biart gap2 |
= hiart gap3
-40 1 2 3 4 5 6
time (s)

Figure 16. Gap responses for the IK approach

For Figure 16, ‘mono gapl’ and ‘mono gap2’ refer to the
monoarticular muscle gaps in the monoarticular structure,
while ‘biart gapl’, ‘biart gap2’, ‘biart gap3’ refer to the
shoulder monoarticular gap, elbow monoarticular gap and
biarticular gap in the biarticular structure. Referring to gap
displacement responses in Figure 16, in the initial gap
stabilization phase (0 to 0.5 s), more interaction is obvious
in the biarticular case, but the biarticular structure shows
better gap control during position tracking.

Int J Adv Robotic Sy, 2012, Vol. 9, 156:2012

Force responses from muscles are shown in Figure 17.
Both forces are bounded. Next, the torque responses
(rotational part of spiral motor) are shown in Figure 18.

150 .
===mono force1
100 ===mono force2
——nbiart forcei
50 E ——nbiart force2
=z | —Dbiart force3
2
S
[T
-50
-100
-150 : .
0 2 4 6

time (s)
Figure 17. Spiral motor forces for the IK approach

0.3

= = =mono torquel
= = =mono torque2
—— biart torque1
= biart torque2
o bigrt torque3

torque (Nm)
IO o o
2 o 4 e

1
o
)

o 1 2 3 4 5 6
time (s)
Figure 18. Spiral motor torque for the IK approach

===mono id1
===mono id2
=—biart id1
——biart id2
==—biart id3

Current (A)
o

-2

3
time (s)
Figure 19. D-axis current for the IK approach

===mono igq1

-- =mono iq2

0.5

Current (A)
=3

-0.5

o 1 2 3 a4 5 6
time (s)
Figure 20. Q-axis current for the IK approach

Figures 19 and 20 show the d- and g-axis currents generated.
As in the spiral motor simplified plant model, the d-axis is
related to muscle (spiral motor) forces while the g-axis is
related to spiral motor torques. It can be said that the
biarticular forces reduce the effort of the elbow monoarticular
muscle, but increase shoulder muscle actuation.
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For this approach, muscle force interactions are clearly
visible (seen in oscillations) as expected, because the
muscles are independently controlled without any force
distribution.

5.2 Direct Cartesian Approach

For the DC approach, the forces from work space/task
space domain are controlled in the shoulder and elbow
joint space (virtually), then transferred to the actuator
(muscle) space by the joint-muscle Jacobian (3).

Figure 21 shows the control diagram and the control

equation is shown in Equation (51) to (55). *res'Yres are
Cartesian end-effector position responses.

= G-l 5 6 =5z

Kdl 0 ] [x - xTeS:l + I:f1:| (51)
0 Kdz Y = Yres f'z
n [ g1 0 .
[71] _ [st91 [Tl =S m11Q1] (52)
(P 0 L2 [lt; —smyq;
| s+92
_Flml
-1 [T1
Finz| = Jng " 2] (53)
-Flm3
where
_[M11 My
M= [m21 mzz]
myq = myl +my(IF + 12 + 21112 cos(q2))
+2Ll+ L+ 1)
My = Myy = My(I&; + 112 cos(qy) + 1)
My = myle, + 1,
Cartesian trajectory
X y P
l 1 ¢! F F F deé 97 4s
Cartesian PD Imq ¥ lmy¥ lmg w s
control, 6,0, 03

Equation (51) - ..
N} Eguazt(;o; Tg, "6 Biarticular
(E N t_) T7 Manipulator
quation Tp, Equation
(18)
(dqg axis (38)
control)
Ty T2 Shoulder/elbow
2 % joint observers
. 2 Equation (52) Forward
Kinematics,
Xres Yres Xres Yres Cartesian

\_ Jacobian
Figure 21. DC control for manipulator
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The inverse Jacobian to obtain the muscle forces, F,,; are
calculated by using Moore’s inverse pseudomatrix. ¥ is
Cartesian acceleration, J~'is the inverse of (6), j is the
Jacobian time derivative, M is 2R planar mass matrix and
gi are disturbance observer gains. Now that the muscle
forces’ terms are obtained from the virtual joint torques, it
must be distributed to the gap and angular terms of the
spiral motor. From Equation (16), the linear forces for the
spiral motor is again shown;

My (%, + h8) = Mg(uyg + hug) = Fip, (54)
The gap control variable (uxg) is the same as in (13), but
the angular control variable is obtained by manipulating
Equation (54) (subscript i refers to respective muscle
number);
F lm;
Ms; Uxg;

ugi = n

(55)
For this study, Cartesian Y disturbance of 10 [N] is also
added to the end-effector from the period of 1 to 3
seconds. The trajectory tracking and Cartesian errors are
depicted in Figure 22 and Figure 23 which shows
significant improvements compared to the IK approach.

0.545

-~ reference
——mono structure
0.54 —— biart structure
E 0535
>
0.53
0.525

0.145 0.15 0.155 0.16
X (m)

Figure 22. Close-up view of circle trajectory responses for the DC
approach

E \
= X}
o Lt
= ' \
w at H
‘Y 1 ---mono xerror
10 [ .' == =mono y error
- ¥ " .
1 \J =—Dbiart x error
‘o ——biart y error
0 1 2 3 4 5 6

time (s)

Figure 23. Cartesian errors for the DC approach

Next, the gap responses are shown in Figure 24.
Biarticular muscle helps gap values for
monoarticulars, especially during disturbance.

reduce

Ahmad Zaki bin Hj Shukor and Yasutaka Fujimoto:
Planar Task Space Control of a Biarticular Manipulator Driven by Spiral Motors

"



12

The spiral motor force and torques are depicted in Figure
25 and Figure 26. Forces were acceptable and bounded
between 60 [N] in both directions for all the muscles.

E
a /a
T _o o
[¢] = = =moho gap1
_4 = = =mono gap2
=——biart gap1
-6 —— biart gap2
——biart gap3
) 1 2 3 4 5 6
time (s)

Figure 24. Gap responses for the DC approach

150
== =mono forcel
100 == =mono force2
= biart force1
50 —— biart force2
g = biart force3
§ 0
£
-50
-100
1500 2 4 6
time (s)

Figure 25. Spiral motor forces for the DC approach

0.3

= = =mono torque1
0.2 = = =mono torque2
= biart torque1
—— biart torque2

Torque (Nm)

time (s)

Figure 26. Muscle torques for the DC approach

6 .
===mono id1

4 ===mono id2
=——biart id1

2 ——biart id2

——biart id3

Current (A)

time (s)

Figure 27. D-axis current for the DC approach

Next, spiral motor d- and g-axis currents are shown in
Figure 27 and Figure 28. It can be seen that the d-axis
current is lower in the biarticular structure than in the
monoarticular only structure.
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===mono iq1
=& =Mono iq2
biart igq1
0.5
_ ‘\‘ biart ig2
% oo “bl_ iq3
¢ T -
= -
8 ‘\ l" ~
L3
-0.5
-1
0 1 2 4 6

3
time (s)

Figure 28. D-axis currents for the DC approach
7. Discussion

The two methods for position control in the task
space/work space domain provide some interesting
results. It is clear that the IK approach and the DC
approach yield acceptable responses.

In the gap stabilization phase, IK provides a clear
oscillatory response in achieving a gap at the centre (0
mm). The biarticular actuation increases the oscillations
of the gaps. In the DC approach, this oscillation does not
exist, in both monoarticular and biarticular structures.
The DC approach provides smooth gap responses
initially. At the start of position tracking (before
disturbance), both methods yield good responses (i.e.,
variation of gap minimum, small amount of forces and
currents), but during disturbance, the effects can be seen
clearly. Tracking errors increase, but control was
maintained. Towards the end of the disturbance, errors
were acceptable.

Table 2 summarizes the comparisons of the IK and DC
methods on monoarticular and biarticular structures
based on Cartesian errors.

Structure/Method
Error (mm) MonoIK  BiartIK ~ MonoDC  BiartDC
Mean x error -0.070 -0.001 -0.017 -0.005
Mean y error -0.039 0.007 -0.013 -0.003
Max. x error 3.800 1.600 0.131 0.149
Max. y error 0.651 0.617 0.120 0.085

Table 2. Comparison of errors between methods/structure

In short, errors for DC method are lower than IK method
and errors for biarticular structures are lower than
monoarticular structures.

8. Conclusion and Future Works

This paper has shown the proposed biarticular
manipulator using spiral motors developed in our
laboratory. The simplification and arrangements of the

muscles and the end-effector-musclejoint force

www.intechopen.com



properties were initially presented. Then, the spiral motor
was introduced and manipulability was discussed. Next,
the modelling of the biarticular manipulator using spiral
motors was briefly explained and the results of the IK
approach and the DC approach for position control of the
manipulator were compared between a monoarticular
only structure and a biarticular structure. For work space
force control schemes (with environment) of a biarticular
manipulator, readers are advised to refer to [26].

The gap control is a crucial element in the spiral motor
direct drive motion. It was shown that the work space
position control was successful in all cases, although
some better responses were shown in the biarticular
manipulator. Among the advantages of the biarticular
structure were the improved control of the gap of the
elbow monoarticular muscle and better accuracy of
trajectory tracking. In future, we plan to compare our
manipulator to other biarticular manipulators available, i.e.,
ball-screw mechanism, pneumatics, cables or hydraulics.
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