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ABSTRACT

This study proposes a novel method of introducing chaotic induced genes inte Genetic
Algorithms (GA) in order to solve unimoedal and multimodal mathematical test functions. The
integration of chaotic elements based on logistic map inte GA has significantly improved the
accuracy in the aspect of the best fitness value. Simulation results show that the influence of Chaos
theory does improve the optimization accuracy of the mathematical functions used.
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INTRODUCTION

Genetic Algorithms (GA) was first suggested by John Holland in early 1970s. While
conventional algorithms are derived from higher-order statistics or from a gradient of a singular
measurement function, GA is a random search algorithm motivated by nature (Goldberg, 1989;
De Castro and Zuben, 2002; Chen et al., 2001). Sustaining its role as a global optimization
technique, GA uses a coding scheme to act on numeric string represented by either binaries or
decimals. The main strength of the evolutionary process for GA is the crossover and the mutation
operator. While GA provides an efficient search method and has been used in many practical
instances of optimization and decision-making problems, it tends te converge prematurely
{Goldberg, 1989),

Chaos is a general phenomenon that cccurs in nonlinear dynamic systems with numerous
applications especially in the field of engineering and physics. Minute differences in initial
conditions would cause widely diverging/divergent results for chaotic systems, so continuous
predictions are impractical (Kellert, 1993). Chaotic behavicur can be seen in many natural systems
such as global weather patterns (Gleick, 1988) and healthy heart rhythms (Goldberger et al.,
1990y,

Thus, in arder to enhance the performance of (GA, an array of chaotic genes is injected into the
GA and this method is expected to improve the accuracy of the fitness value. The functions to be
used for comparing optimization results include Rastrigin’s, De Jong’s first, Rosenbrock’s and
Griewangk’s function.

CHAOTIC MAPS AND GENETIC ALGORITHM
Chaotic maps: Using chaotic sequences instead of randomized number generators appears to be
able to improve the performance of conventional heuristic algorithms. While the initial population
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Tahble 1: Common chaotic maps
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or genes are well-spread out by using chaotic maps, randomized genes are normally generated
using Gaussian or Normal distribution. The commonly used chaoctic maps are presented in
Table 1. All of the chaotic maps listed in Table 1 are in real space domain. Logistic, Cubic and
Ricker’s {Chen and Huang, 2011) are one-dimensional maps while Hénon and Ikeda (Driebe, 1999)
are in two dimensional space. The Lorenz map is a three-dimensional map and is in the continuous
time domain. The rest of the chaotic maps are parameterized by a discrete-time domain.

Genetic algorithm: GA is a search technique that has a representation of the problem states
{(by using a set of chromosomes) and also has a set of operations te move through the search space.
Each chromosome represents an individual solution {gene) to the problem. The set of individual
solutions or genes forms a population. Genes in the population improve generation by generation
through a set of operation that GA uses during the search process. During each generation, genes
will go through the process of selection, crossover and mutation (Emmeche, 1994).

In selection, an objective function (fitness function) is used to assess the quality of the solution.
The fittest solutions from each generation are kept. The crossover function generates new solutions
given a set of selected members of the current population. Crossover exchanges genetic material
between two single chromosome parents. Lastly, mutation would cause a sudden change in
chromosomes in an unanticipated manner. As such, some values of a chromosome are altered by
adding random values to the current values, therefore producing a different sclution. The mutation
operation is a smart technique to escape from local optimal trap in which state-space search
algorithms may fall into.

Genetic algorithm with chaotic genes: The operation of a standard GA with initial chaotic

genes can be represented in pseudo-code format in Fig. 1, while the summary is as follows
{Goldberg, 1989):

Step 1: Generate an initial population of individuals using predefined chaotic map
Step 2: Calculate the fitness values of the individuals in the current pepulation
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begin GA
c: =0 {counter }
Initialize population based on chaotic map
Evaluate population {calculate fitness values }
Do:
c:=ctl
Selection
Crossover
Mutation
Evaluation
end
end GA

Fig. 1: Pseudo-code of the standard GA

Step 3: Select individuals for reproeduction

Step 4: Apply crossover and mutation operator

Step 5: Compute the fitness values of the individuals

Step 6: Select the best individuals to create the new population

Step 7: Steps 3 to 6 are repeated until a pre-defined stopping criterion is attained

In the present work, the classical GA 1s used with binary codification, scattered crossover, one

individual elitism and stochastic uniform selection while the chaotic maps injected are based on
Table 1.

MATHEMATICAL TEST FUNCTIONS

In order to compare the performance of a normal GA with injected chaotic genes, four
mathematical test functions would be used (Suganthan et al., 2005). These test functions provide
a benchmarking method in testing the efficiency of the global optimization algerithms. For the next

subsections, the details of each test function used in this study would be discussed.

Rastrigin’s function: Eastrigin’s function is mathematically defined as:

f(x)= i(xf —10cos(2mx, )+ 10) where -5.12 <x, <5.12 (1)

i=1

The global minimum 1s located at the origin and its function value is zero. Rastrigin’s funection
of dimension 2 is shown in Fig. 2.

De Jong’s first function: De Jong’s first function is mathematically defined as:

f,(x)= x’ where -5.12 <x, £-5.12 (2)
2 1 i

i=1

The global minimum is located at the origin and its function value is zerc. De Jong's first
funetion of dimension 2 1s shown in Fig. 3.
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Fitness value

Second gene 4 First gene

Fig. 2: A two-dimensional plot of Rastrigin’s function

Fitness value

Second gene s -6 First gene

Fig. 3: A two-dimensional plot of De Jong's first function

De Jong’s second function (also known as Rosenbrock’s Function): De Jong's second
function is mathematically defined as:

£,(x) = "2_1‘4(100(&+1 7xf)2)+ (%, —1)?) where -2.048 < x, <-2.048 (3)
i=1
The global minimum is located at (1, ..., 1) and its function value is zero. De Jong’s second
function of dimension 2 is shown in Fig. 4.
Griewangk’s function: Griewangk’s function is mathematically defined as:

5 Xf = & 0
f,(x)= élm - 9 cos 8IB+1 where -600 £ x, £ -600 (4)
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Fig. 5: A two-dimensional plot of Griewangk’s function

The global minimum is located at the origin and its function value is zero. Griewangk’s function
of dimension 2 is shown in Fig. 5.

Simulation results and discussions: The comparison in simulation performance between GA
and the injected chaotic genes was carried out by using a computer with AMD Phenom 9600B
Quad-Core CPU running at 2.30 GHz, 2 GB of RAM and Windows Vista operating system. For the
normal GA, the scattered crossover, the Gaussian mutation and the stochastic uniform selection
operators are used. The value of crossover rate and mutation rate was set at 0.8 and 0.01,
respectively. For the GA with injected chaotic maps, the parameters of the chaotic maps used are
shown in Table 1. The initial population size and number of iterations are fixed at 50 for all
experiments. The simulation results are shown in Table 2 with different mathematical test
function. A better accuracy is achieved for fitness values closer to zero Thus, Logistic, Hénon and
Ikeda function performed better than the standard GA in all of the test functions used. Similarly,
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Tahble 2: Comparison of fitness value results using normal GA and injected chaotic maps

Map Rastrigins Griewangk De Jong 1 De Jong 2
GA 7.72E-02 3.77E-04 1.12E-03 4.98E-02
Cubic 7.04E-01 1.60E-03 6.07E-08 1.49E-02
Ricker's 8.52K-01 1.58E-03 4.04K-03 2.41E-01
Logistics 1.20E-05 3.04E-08 6.07E-08 3.83E-07
Hénon 3.38E-03 2.73E-07 1.71E-05 2.67E-02
Tkeda 6.77E-03 1.71E-05 1.74E-05 3.88E-04
Lorentz flow 7.12E-01 2.21E-03 4.59K-03 5.87E-02

there 1s an improvement for Cubic funetion in comparison with the standard GA for De Jong 1 and
De Jong 2 test function, respectively. The improvement in the accuracy of the fitness value 1s
proebably due to the randomness of the genes based on the chaotic map that covers a wide range
of possible solutions, especially in the initialization stage of the GA. Overall, GA with Logistics
chaotic map performed the best in all the four mathematical test functions with the lowest fitness
value in the order of E-08.

A comparison with the classical particle swarm optimization, genetic algorithm and artificial
immune system by other authors (Edge et al., 2006; Gu et «l., 2009; Valdez and Melin, 2008,
Vieira et al., 2009; Yap ef al., 2009) shows that the chaotic GA proposed here is superior in terms
of achieving the fitness value closest to zero. In addition, in Ma and La (2009), Ru and Jianhua
(2008), Sun et al. (2009), Yap et al. (20114, b), the performance of chaotic GA 1s on par with
other hybrid immune based algorithms with fitness values in the region of E-08 to E-08. With the
increase 1n accuracy by injecting chaotic maps into normal GA; applications such as scheduling
problems, daily rostering systems or other optimization problems would bear better and accurate
results.

CONCLUSION

The simulation results of GA and chaotic maps was presented and compared. The usage of the
multimodal test function shows that the GA and chaotic maps have comparable fitness value with
differences in the order of thousands or less from the global minimum. From the results, Logistic,
Hénon and Ikeda performed better than the standard GA in obtaining the lowest fitness value of
the multimodal test functions. Future work may include improved or moedified GA and chaotic map
with other Particle Swarm Optimization or Artificial Immune System as a hybrid algorithm that
will be used to optimize other complicated test function.
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