
www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 1

Three Bit Subtraction Circuit

via Field Programmable Gate Array

A. Jaafar

1
, N. Arasid

2
, N. M. Z. Hashim

3
, A. A. Latiff

4
, Hazli Rafis

5

1, 2, 3, 4, 5 Faculty of Electronics & Computer Engineering,

Universiti Teknikal Malaysia Melaka,

Hang Tuah Jaya, 76100 Durian Tunggal,

Melaka, Malaysia.

1anuarjaafar@utem.edu.my, 2emiko_syah@yahoo.com;

 3nikzarifie@utem.edu.my, 4anasabdullatiff@utem.edu.my,
5hazli.rafis@utem.edu.my

Abstract: This project is about to design the software and hardware simulator for a Three Bit subtraction Circuit

via Field Programmable Gate Array (FPGA). The three bit subtraction circuits are involved in performing the

subtraction for each bit by performs operation the arithmetic and logic unit, called the Arithmetic Logic Unit (ALU).

All this operation is to be displayed at seven segment using FPGA board by using Verilog language. A FPGA is a

semiconductor device containing programmable logic components called "logic blocks", and programmable

interconnects. Logic blocks can be programmed to perform the function of basic logic gates such as AND, and XOR,

or more complex combinational functions such as decoders or simple mathematical functions such as additional,

subtraction, multiplication, and divisions (+, -, x, ÷). In conclusion, three bit subtraction circuit via FPGA has been

successfully designed and developed. In order to have a complete system that is design by our own, one of the

recommendation to enhance the possibility of this thesis is to develop the hardware equip with wireless technology.

Keywords: Arithmetic Logic Unit (ALU), Field Programmable Gate Array (FPGA), Logic Block, Subtraction

Circuit, Verilog.

1. INTRODUCTION
This project is to design the software and a hardware

simulator for a three bit subtraction Circuit via

FPGA. The designing the three bit subtraction circuit

are involved in performing the subtraction for each

bit by performs operation the arithmetic and logic

unit, called the Arithmetic Logic Unit (ALU)

example Addition, Subtraction, Multiplication and

Division. All this operation is to display at seven

segment using FPGA board by using Verilog

language [1], [2]. A FPGA is a semiconductor device

containing programmable logic components called

"logic blocks", and programmable interconnects.

Logic blocks can be programmed to perform the

function of basic logic gates such as AND, and XOR,

or more complex combinational functions such as

decoders or simple mathematical functions (+, -, x,

÷). In most FPGAs, the logic blocks also include

memory elements, which may be simple flip-flops or

more complete blocks of memories. Combination of

FPGA and ALU will produce the design of three bit

subtraction circuit via FPGA [3]. The purpose of

designing three bit subtraction is in order to do

operation of subtraction three bits are needed e.g. 2 –

0 = 2 the integer is representing as bits. These three

bits will be implemented as logic gates in order to

obtain the result of subtraction[4]. The problem that

been discussed in this issue was FPGAs are usually

slower than their application-specific integrated

circuit (ASIC) counterparts, as the capability to

handle a complex task [5]. Two bits for subtraction

will not represent any result. Therefore to obtain the

result the minimum number of bits to be used is three

bits.

2. LITERATURE REVIEW
A field-programmable gate array is a semiconductor

device containing programmable logic components

called "logic blocks", and programmable

interconnects [6]. Logic blocks can be programmed

to perform the function of basic logic gates such as

AND, and XOR, or more complex combinational

mailto:2emiko_syah@yahoo.com
mailto:5hazli.rafis@utem.edu.my

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 2

functions such as decoders or simple mathematical

functions [7]. In most FPGAs, the logic blocks also

include memory elements, which may be simple flip-

flops or more complete blocks of memories. A

hierarchy of programmable interconnects allows

logic blocks to be interconnected as needed by the

system designer, somewhat like a one-chip

programmable breadboard [8], [9], [10]. Logic blocks

and interconnects can be programmed by the

customer or designer, after the FPGA is

manufactured, to implement any logical function

hence the name "field-programmable"[6]. FPGAs are

usually slower than their application-specific

integrated circuit (ASIC) counterparts, as they cannot

handle as complex a design, and draw more power.

But their advantages include a shorter time to market,

ability to re-program in the field to fix bugs, and

lower non-recurring engineering costs [11]. Vendors

can sell cheaper, less flexible versions of their

FPGAs which cannot be modified after the design is

committed [12], [13], [14]. The designs are

developed on regular FPGAs and then migrated into

a fixed version that more resembles an ASIC.

Another alternative are complex programmable logic

devices (CPLDs) and Xilinx Sparta-II FPGA is used

as the tools.

2.1. Applications of FPGA

Applications of FPGAs include digital signal

processor DSP, software-defined radio, aerospace

and defense systems, ASIC prototyping, medical

imaging, computer vision, speech recognition,

cryptography, bioinformatics, computer hardware

emulation and a growing range of other areas. FPGAs

originally began as competitors to CPLDs and

competed in a similar space, that of glue logic for

PCBs. As their size, capabilities, and speed increased,

they began to take over larger and larger functions to

the state where some are now marketed as full

systems on chips (SOC) [15]. FPGAs especially find

applications in any area or algorithm that can make

use of the massive parallelism offered by their

architecture. One such area is code breaking, in

particular brute-force attack, of cryptographic

algorithms. FPGAs are increasingly used in

conventional High Performance Computing

applications where computational kernels such as

FFT or Convolution are performed on the FPGA

instead of a microprocessor. The use of FPGAs for

computing tasks is known as reconfigurable

computing [6]. The inherent parallelism of the logic

resources on the FPGA allows for considerable

compute throughput even at a sub-500MHz clock rate

[16], [17]. For example, the current (2007) generation

of FPGAs can implement around 100 single precision

floating point units, all of which can compute a result

every single clock cycle. The flexibility of the FPGA

allows for even higher performance by trading off

precision and range in the number format for an

increased number of parallel arithmetic units. This

has driven a new type of processing called

reconfigurable computing, where time intensive tasks

are offloaded from software to FPGAs. The adoption

of FPGAs in high performance computing is

currently limited by the complexity of FPGA design

compared to conventional software and the extremely

long turn-around times of current design tools, where

4-8 hours wait is necessary after even minor changes

to the source code [7].

2.2. FPGA Architecture

The typical basic architecture consists of an array of

configurable logic blocks (CLBs) and routing

channels. Multiple I/O pads may fit into the height of

one row or the width of one column in the array.

Generally, all the routing channels have the same

width (number of wires). An application circuit must

be mapped into an FPGA with adequate resources. A

classic FPGA logic block consists of a 4-input lookup

table (LUT), and flip-flop, as shown below. In recent

years, manufacturers have started moving to 6-input

LUTs in their high performance parts, claiming

increased performance. Typical logic block there is

only one output, which can be either the registered or

the unregistered LUT output. The logic block has

four inputs for the LUT and a clock input. Since

clock signals (and often other high-fan out signals)

are normally routed via special-purpose dedicated

routing networks in commercial FPGAs, they and

other signals are separately managed. Logic Block

Pin Locations Each input is accessible from one side

of the logic block, while the output pin can connect to

routing wires in both the channel to the right and the

channel below the logic block. Each logic block

output pin can connect to any of the wiring segments

in the channels adjacent to it. Similarly, an I/O pad

can connect to any one of the wiring segments in the

channel adjacent to it. Generally, the FPGA routing is

UN segmented. That is, each wiring segment spans

only one logic block before it terminates in a switch

box. By turning on some of the programmable

switches within a switch box, longer paths can be

constructed For higher speed interconnect, some

FPGA architectures use longer routing lines that span

multiple logic blocks.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 3

Modern FPGA families expand upon the above

capabilities to include higher level functionality fixed

into the silicon. Having these common functions

embedded into the silicon reduces the area required

and gives those functions increased speed compared

to building them from primitives. FPGAs are also

widely used for systems validation including pre-

silicon validation, post-silicon validation, and

firmware development. This allows chip companies

to validate their design before the chip is produced in

the factory, reducing the time to market.

2.3. FPGA design and programming

To define the behavior of the FPGA the user provides

a hardware description language (HDL) or a

schematic design. Common Verilog [18], [19]. The

user will validate the map, place and route results via

timing analysis, simulation, and other verification

methodologies. Once the design and validation

process is complete, the binary file generated (also

using the FPGA company's proprietary software) is

used to (re)configure the FPGA. To simplify the

design of complex systems in FPGAs, there exist

libraries of predefined complex functions and circuits

that have been tested and optimized to speed up the

design process. These predefined circuits are

commonly called IP cores, and are available from

FPGA vendors and third-party IP suppliers. Figure 1

illustrates the Internal Architecture of FPGA. The

purpose of programmable logic block in a FPGA is to

provide the basic computation and storage elements

used in digital systems. The basic logic element

contains some form of programmable combinational

logic, a flip-flop or latch and some fast carry logic to

reduce area and delay cost to it could be entire

processor. In addition to a basic logic block, many

modern FPGAs contains a heterogeneous mixture of

different blocks, some of which can only be used for

specific functions, such as dedicated memory blocks,

multipliers or multiplexers; of course, configuration

memory is used throughout the logic block to control

the specific function of each element within the

block.

Figure 1: Internal Architecture of FPGA

2.4. Xilinx Tools

2.4.1. Xilinx Spartan II FPGA

The Spartan II FPGA platform as shown in Figure 2

combines the performance and functionality

advantages of SRAM-based technology with reliable

on-volatile flash technology in a single-chip solution.

Figure 2: The Spartan-II FPGA platform

Used this board for the implementation of the design

and it was fairly easy as the Spartan-II platform

provides flexibility.

2.4.2. Design Implementation using Xilinx ISE

Xilinx Integrated Software Environment (ISE) is a

powerful yet flexible integrated design environment

that allows designing Xilinx FPGA devices from start

to finish ISE as shown in Figure 3, includes design

entry, synthesis and implementation tools delivering

the industry's fastest place and route times, highest

performance, and most advanced design

methodologies. ISE controls all aspects of the design

flow Through the Project Navigator interface, all of

the design entry and design implementation tools can

be accessed.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 4

Figure 3: Xilinx Integrated Software Environment

(ISE)

Design Implementation is the process of translating,

mapping, placing, routing, and generating a BIT file

for the design. The Design Implementation tools are

embedded in the ISE software for easy access and

project management. Design Implementation tools,

and must incorporate placement constraints through a

User Constraints File (UCF).

2.5. Subtraction

A good representation for negative numbers makes

subtraction hardware much easier to design.

i. Two‟s complement is used most often (although

signed magnitude shows up sometimes, such as

in floating-point systems).

ii. Using two‟s complement, it can build a

subtraction with minor changes to the adder from

last time.

iii. It can also make a single circuit which can both

add and subtracted.

Overflow is still a problem, but signed overflow is

very different from the unsigned overflow. Sign

extension is needed to properly “lengthen” negative

numbers. For example a subtraction circuit that

shows below and must understand how to illustrate it

and apply to the Verilog coding.

For least-significant bits

 (1)

 (2)

For least-sign

 (3)

 (4)

According to Table 1 show an example of truth table

where the equation 1 until equation 4 input are used

to find the of 𝑑0, 𝑏1, 𝑑1 and 𝑏𝑖+1. For example, the

equation 2 . Just implement the value

given in the truth table and obtain the value.

TABLE 1

TRUTH TABLE

xi yi bi si bi+1

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

Adder is most basic design that is used for

subtraction [20]. For example to design a subtraction

circuit, the binary value is complimented. Below are

the circuit shown and Verilog coding of how it is

implemented respectively. Figure 4 shows a design of

a subtraction circuit and Figure 5 shows how to

convert the subtraction circuit into Verilog coding.

Figure 4: Example design a subtraction circuit

Figure 5: Example Verilog coding

y
0

y
1

y
n–1

y
0

c
0

c
n

y
1

y
n–1

…

…

…

…

x
0

x
1

x
n–1

x
0

x
1

x
n–1

… s
0

s
1

s
n–1

s
n–1

/d
n–1

s
1
/d

1
s

0
/d

0

…

adder

add/sub

ovf/unf

110 yxd 

111 yxb 

  iiii byxd 

  iiiiii byxyxb 1

001 yxb 

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 5

3. METHODOLOGY

3.1. Methodology flowchart

The project methodology is illustrated in Figure 6.

There are few steps that have been involved in order

to achieve the objectives of the project. Each project

needs suitable strategy on planning in order to run the

project smoothly. As soon as the purpose and

function of the project are clear, the method of the

project is divided into several parts. In this system

show the process of developing the coding of three

bit subtraction circuit using the Verilog language.

This coding is generating using the block diagram

that was designed which includes logic gates.

Furthermore, after designing the diagram the coding

for the design of diagram is developed using the

Xilinx ISE software to generate the circuit for three

bits subtraction. Once the coding is successful run,

the simulation test can be done using generate test

bench to test in behavior implementation. If the

simulations fail, the result at the waveform can be

observed and redesign the test bench or the Verilog

coding is needed. Once coding of three bit

subtraction is fully finish. The coding will be testing

on board FPGA.

Figure 6: Methodology flowchart

From the Figure 7 shows that several step used to

design the overall process in designing three bit

subtraction. For design entries, it describes each

Xilinx constraint, including supported architectures,

applicable elements, propagation rules, and syntax

examples. It also describes constraint types and

constraint entry methods. Provides strategies for

using timing constraint and describes supported third

party constraints. Design synthesis and behavioral

simulation will provide a general overview of

designing Field Programmable Gate Arrays (FPGA

devices) with Hardware Description Languages

(HDLs). It will also include design hints for the

novice HDL designer, as well as for the experienced

designer who is designing FPGA devices for the first

time. Furthermore for design implementation it will

describes Xilinx implementation tools and design

flows, including the hierarchical flows such as

Incremental Design, Modular Design, and Partial

Reconfiguration. Includes reference information for

Xilinx FPGA and CPLD command line tools,

including syntax, input files, output files, and options.

Xilinx device programming describes the function

and operation of Spartan II devices. Moreover,

describes how to achieve maximum density and

performance using the special features of the devices

which includes information on FPGA configuration

techniques and printed circuit board (PCB) design

considerations.

Figure 7: Step-by-step through the design process

From Figure 8 show the simulation flow of this

propose system. To verify that design operates

correctly used simulation, which is process of testing

the design of three bit subtraction apply inputs to a

circuit. The output of a simulation is a set of

waveforms that show how a circuit behaves based on

a given sequence of inputs. In this step there are two

main types of simulation: functional and timing

simulation. The functional simulation tests the logical

operation of a circuit.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 6

This simulation is fast and useful for checking the

fundamental correctness of the designed circuit. The

second step of the simulation process is the timing

simulation. It is a more complex type of simulation,

where logic components and wires take some time to

respond to input. In addition to test the logical

operation of the circuit.

Figure 8: The simulation flow

3.2. Setting up Xilinx software

Xilinx Tools can be started by clicking on the Project

Navigator Icon on the Windows desktop. This should

open up the Project Navigator window on the screen.

This window shows the last accessed project. From

Figure 8 File->New Project is selected to create a

new project.

Figure 9: Window Form of Xilinx ISE 10.1

From Figure 9 new project initiations will appear and

fill up the necessary entries as follows: Project

Name is used to write the name of new project.

Furthermore, Project Location will indicate the entire

directory where new project to be stored. HDL Top-

level Source Type is chosen.

Figure 10: New Project Initiation window (snapshot

from Xilinx ISE software)

From Figure 10 each of the properties given below

need to be understood, click on the „value‟ area and

select from the list of values that appear. Device

Family is Family of the FPGA/CPLD used. In this

project the Spartan II FPGA‟s is being used. Device

is the number of the actual device. For this project

XC2S50 is been enter. Package indicates the type of

package with the number of pins. The Spartan FPGA

used in this project is packaged in PQ208 package.

The Speed grade is “-6”. Synthesis Tool that was

selected is XST [VHDL/Verilog]. Simulator is the

tool used to simulate and verify the functionality of

the design. Finally click on NEXT to save the entries.

Figure 11: Device and Design Flow of Project

(snapshot from Xilinx ISE software)

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 7

In the previous window, click on the NEW SOURCE

then a window pops up as shown in Figure 12.

Figure 12: Create new source window (snapshot

from Xilinx ISE software)

From Figure 13 Select Verilog Module and in the

“File Name:” area, enter the name of the Verilog

source file to be created. Also make sure that the

option Add to project is selected so that the source

need not be added to the project again. Then click on

Next to accept the entries.

Figure 13: Creating Verilog-HDL source file

(snapshot from Xilinx ISE software)

From Figure 14 In the Port Name column, enter

the names of all input and output pins and

specify the Direction accordingly. A Vector/Bus can

be defined by entering appropriate bit numbers in the

MSB/LSB columns. Then click on Next> to get

a window showing all the new source

information. If any changes are to be made, just click

on <Back to go back and make changes. If everything

is acceptable, click on Finish > Next > Next > Finish

to continue.

Figure 14: Define Verilog Source window (snapshot

from Xilinx ISE software)

From Figure 15 once Finish button is clicked, the

source file will be displayed in the sources window in

the Project Navigator. If a source has to be

removed, just right click on the source file in

the Sources in Project window in the Project

Navigator and select Remove in that. Then select

Project -> Delete Implementation Data from the

Project Navigator menu bar to remove any related

files.

Figure 15: New Project Information window

(snapshot from Xilinx ISE software)

From Figure 16 illustrates the step in creating the

new source is to add the behavioral description for

counter. Use a simple counter code example from the

ISE Language Templates and customize it for the

three bit subtraction design.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 8

Figure 16: Language Templates Verilog (from

Xilinx ISE software)

3.4. Functional Simulation of Combinational

Designs

3.4.1. Adding the test vectors

From Figure 17 to check the functionality of a

design, testing vectors and simulating the circuit are

applied. In order to apply test vectors, a test bench

file is written. Essentially it will supply all the inputs

to the module designed and will check the outputs of

the module. Click „Next‟ to proceed. In the next

window select the source file with which want to be

associated the test bench.

Figure 17: Adding test vectors to the design

(snapshot from Xilinx ISE software)

3.4.2. Simulating and Viewing the Output

Waveforms

From Figure 18 now under the Processes window

(making sure that the testbench file in the Sources

window is selected) expand the ModelSim simulator

Tab by clicking on the add sign next to it. Double

Click on Simulate Behavioral Model. Compiler error

will be in place at the screen. Answer “No” if abort

simulation will be chosen. This should cause

ModelSim to open. Wait for it to complete execution.

If you wish to not receive the compiler error, right

click on Simulate Behavioral Model and select

process properties. Mark the checkbox next to

“Ignore Pre-Complied Library Warning Check”.

Figure 18: Simulating the design (snapshot from

Xilinx ISE software)

From Figure 19 shows that Verifying Functionality

using Behavioral Simulation. Firstly create a test

bench waveform containing input stimulus use to

verify the functionality of the three bit subtraction

module. The test bench waveform is view using

graphical view design. In the Sources window, select

the Behavioral Simulation view to see that the test

bench waveform file is automatically added to the

project. Verify that the three bit subtraction design

functions as expect by performing behavior

simulation. In the Processes tab, click the “+” to

expand the Xilinx ISE Simulator process and double-

click the Simulate Behavioral Model process. The

ISE Simulator opens and runs the simulation to the

end of the test bench. Lastly to view the simulation

results, select the Simulation tab and zoom in on the

transitions.

Figure 19: Simulation Results

3.4.3. Assigning Pins with Constraints

From Figure 20 shows that Specify the pin locations

for the ports of the design so that it can connect

correctly on the Spartan-II Startup Kit demo board.

To constrain the design ports to package pins, follow

the following instruction. First verify the three bit

subtraction selected in the sources window. Then

double-click the Floor plan Area/IO/Logic - Post

Synthesis process found in the User Constraints

process group. The Xilinx Pinout and Area

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 9

Constraints Editor (PACE) open. Finally select the

Package Viewtab.

Figure 20: Construct the pin input output

The next is connecting the 5V DC power cable to the

power input on the demo board. Then connect the

download cable between the PC and demo board.

Select Implementation from the drop-down list in the

Sources window. After that, select three bit

subtraction in the Sources window. In the Process

window, double-click the Configure Target Device

process. The Xilinx WebTalk Dialog box will open

during the process. Click Decline. iMPACT opens

and the Configure Devices dialog box is displayed

show at Figure 21. In the Welcome dialog box, select

Configure devices using Boundary-Scan (JTAG).

Verify that automatically connect to a cable and

identify Boundary-Scan chain is selected. Then click

finish. The devices connected to the JTAG chain on

the board will be detected and displayed in the

iMPACT window.

Figure 21: iMPACT Welcome Dialog Box

From Figure 22 and Figure 23 shows the last step in

the design verification process. This section provides

simple instructions for downloading the three bit

subtraction design to the Spartan-II Starter Kit demo

board. The progress of the bit stream download will

be displayed. The download operation should take

less than a minute. When programming is complete,

the Program Succeeded message will displayed at

Figure 24.

Figure 22: Download of the bit stream to the FPGA

Figure 23: Progress of the bit stream download

Figure 24: Succeeded message

4. RESULTS AND DISCUSSIONS

4.1. Design three bit subtraction
Implementation of 3 bit subtraction using Verilog

HDL and its testing on the Spartan 2 FPGA. Starting

the ISE Software. To start ISE, double-click the

desktop icon, or start ISE from the Start menu by

selecting: Start →All Programs →Xilinx ISE

10.1→Project Navigator Note that design start-up

path is set during the installation process. From

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 10

Figure 25 shows that the full block diagram of design

which include Binary Adder –Subtraction, Half

Adder and Full Adder. The gate level diagram of the

3 bit subtraction was obtained as follows: -

Figure 25: Block diagram for three bit subtraction

circuit design

Among the functions encountered are the various

arithmetic operations. The most basic arithmetic

operation is the addition of two binary digits. This

simple addition consists of four possible elementary

operations. 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10.

The first three operations produce sum of one digit,

but when the both augends and addend bits are equal

1, the binary sum consists of two digits.

A binary adder-subtractor is a combinational circuit

that performs the arithmetic operations of addition

and subtraction with binary numbers. The circuit will

be developed by means of a hierarchical design. The

half adder design is carried out first, from which is

developed the adder. Connecting n full adders in

cascade produces a binary adder for two n-bit

numbers. Meanwhile for Half Adder From the verbal

explanation of a half adder, this circuit needs two

binary inputs and two binary outputs. The input

variables designated the augends and addend bits; the

output variables produce the sum and carry. Symbols

x and y are assigned to the inputs and S (for sum) and

C (for carry) to the outputs. The truth table for the

half adder is listed in Table 4.1. The C output is 1

only when both inputs are 1. The S output represents

the least significant bit of the sum. The simplified

Boolean functions for the two outputs can be

obtained directly from the truth table. The simplified

sum of products expressions are:

yy xyyxS  (5)

xyC  (6)

The logic diagram of the half adder implemented in

sum of product is shown in Figure 26. It can be also

implemented with an exclusive-OR and AND gate.

This form is used to show that two half adders can be

used to construct a full adder.

TABLE 2
THE TRUTH TABLE FOR THE HALF ADDER

x y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Figure 26: Implementation of Half-Adder

The next one is Full-Adder; a full adder is a

combinational circuit that forms the arithmetic sum

of three bits. It consists of three inputs and two

outputs. Two of the inputs variables, denoted by x

and y, represent the two significant bits to be added.

The third input, z, represents the carry from the

previous lower significant position. Two outputs are

necessary because the arithmetic sum of three binary

digits ranges in value from 0 to 3, and binary 2 or 3

needs two digits. The two outputs are designated by

the symbols S for sum and C for carry. The binary

variable S gives the value of the least significant bit

of the sum. The binary variable C gives the output

carry. The truth table of the full adder is listed in

Table 2. The eight rows under the input variables

designate all possible combinations of the three

variables. The output variables are determined from

the arithmetic sum of the input bits. When all input

bits are 0, the output is 0. The S output is equal to 1

when only one input is equal to 1 or when all three

inputs are equal to 1. The C output has a carry of 1 if

two or three inputs are equal to 1. A input and output

bits of the combinational circuit have different

interpretations at various stages of the problem.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 11

Physically, the binary signals of the inputs are

considered binary digits to be added arithmetically to

form a two-digit sum at output. On the other hand,

the binary values are considered as variables of

Boolean functions when expressed in the truth table

or when the circuit is implemented with logic gates.

Figure 27 shows the Implement of Full – Adder with

two half adders and an OR gate.

TABLE 3
FULL ADDER

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Figure 27: Implement of Full – Adder with two half
adders and an OR gate

4.2. Analysis
Three Bit Subtraction circuit via FPGA was

successfully designed and all the connection and

configuration was able to communicate with each

other. All the software and hardware was

successfully design, simulation and testing on FPGA

board. Briefly the system function will work when as

the operation of subtraction started. For example 7-

3=4 and the result will be show at the waveform that

was generated. From the Figure 28 shows that the top

module show that input output of the diagram which

in the diagram, the input are a and b that both of the

input are three bit. Meanwhile at the output the total

sum is three bit.

Figure 28: RTL schematic for top module three bits

From Figure 29 shows that the top design of full
operation and connection of three bit subtraction in
design, in this design that shows the first complement
in input b, and the second complement of Full Adder.
In this full adder the input a and b have three bit input
each of them. Meanwhile the output is three bit twos
out where this output is connected to full adder to
complete the operation of subtraction. E.g. 5-1=4.

 Figure 29: Full RTL schematic

For the Figure 30 shows that operation of subtraction.
Input a and b are respectively three bit. Minimum
operation of subtraction could be calculated from
range 0 to 7. For example a-b=total_sum. From the
figure above if 3-0=3 and it will show at counter 4. If
4-1=3 it will show at counter13.

Figure 30: Simulation result of three bit subtraction

For the Figure 31 show that operation of subtraction.
From the figure above if 4-2=2 and it will show at
counter 21. If 6-3=3 it will show at counter 31.

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 12

Figure 31: Simulation result of three bit subtraction

For the Figure 32 show that operation of subtraction
of 5 – 4 = 1. It will show at counter 38. Any number
from 0 to 7 can be calculated as input in order to do
subtraction. This is because 2^(3)=8.

Figure 32: Simulation result of three bit subtraction

5. CONCLUSIONS
In conclusion, three bit subtraction circuit via FPGA

has been successfully designed and developed.

Furthermore, three bit subtraction circuit are

involved in performing the subtraction for each bit by

performs operation the arithmetic and logic unit,

called the Arithmetic Logic Unit (ALU) example

Addition, Subtraction, Multiplication and Division.

The main benefit offered by the proposed system is it

can simplify design the complex systems in FPGAs.

In addition, the system proposed can build up more

benefit to enhance better profit and minimized the

human error. To have a complete system that is

design by our own, one of the recommendation to

enhance the possibility of this thesis is to develop the

hardware equip with wireless technology. Since

wireless technology is growing very fast in the

modern world, it could be used in the proposed

system to enhance better performance.

Acknowledgement

We are grateful to Universiti Teknikal Malaysia

Melaka (UTeM) for their kind help for supplying the

electronic components and giving their laboratory

facility to complete this study.

REFERENCES
[1] Steven Medina, Adders and Subtractors Design

with Verilog HDL. Fall, 2007.

[2] C. E. Cummings and S. W. B. Drive, “Correct

Methods For Adding Delays To Verilog

Behavioral Models,” pp. 1–8, 1999.

[3] V. P. Orginos, “Algorithm for Multi-

operation-Logarithmic Number System

Subtraction and Addition Two Bit Compare

Four Bit,” in International Symposium On

Circuit and system, 2005, pp. 2001–2005.

[4] A. Jaafar, A. H. Hamidon, A. A. Latiff, H.

Rafis, H. H. M. Yusof, and W. H. M. Saad,

“Modelling of swarm communication,”

International Journal of Advanced Research in

Electrical, Electronics and Instrumentation

Engineering, vol. 2, no. 8, pp. 3725–3731,

2013.

[5] Clive Maxfield, The Design Warrior’s Guide to

FPGAs: Devices, Tools and Flows. Elsevier,

UK, 2004.

[6] Philip Simpson, FPGA Design: Best Practices

for Team-Based Design, Third. Springer LTD,

UK, 2010.

[7] Steve Kilts, Advance FPGA Design, Fourth.

John Wiley & Sons LTD, UK, 2007.

[8] N. M. Z. Hashim, M. H. A. Halim, H. Bakri,

S. H. Husin, and M. M. Said, “Vehicle

Security System Using Zigbee,” International

Journal of Scientific and Research

Publications, vol. 3, no. 9, pp. 1–6, 2013.

[9] N. M. Z. Hashim, A. F. Jaafar, Z. Zakaria, A.

Salleh, and R. A. Hamzah, “Smart Casing for

Desktop Personal Computer,” International

Journal Of Engineering And Computer Science

(IJECS), vol. 2, no. 8, pp. 2337–2342, 2013.

[10] N. M. Z. Hashim, N. A. Ali, A. Salleh, A. S. Ja,

and N. A. Z. Abidin, “Development of

Optimal Photosensors Based Heart Pulse

Detector,” International Journal of

Engineering and Technology (IJET), vol. 5, no.

4, pp. 3601–3607, 2013.

[11] Samir Palnitkar, Verilog HDL: A Guide to

Digital Design and Synthesis, Second. Prentice

Hall Profesional, UK., 2003.

[12] N. M. Z. Hashim, N. M. T. N. Ibrahim, Z.

Zakaria, F. Syahrial, and H. Bakri,

“Development New Press Machine using

Programmable Logic Controller,”

International Journal Of Engineering And

www.ijaret.org Vol. 1, Issue VIII, Sep. 2013
 ISSN 2320-6802

INTERNATIONAL JOURNAL FOR ADVANCE RESEARCH IN

ENGINEERING AND TECHNOLOGY
WINGS TO YOUR THOUGHTS…..

Page 13

Computer Science (IJECS), vol. 2, no. 8, pp.

2310–2314, 2013.

[13] N. M. Z. Hashim, N. H. Mohamad, Z.

Zakaria, H. Bakri, and F. Sakaguchi,

“Development of Tomato Inspection and

Grading System using Image Processing,”

International Journal Of Engineering And

Computer Science (IJECS), vol. 2, no. 8, pp.

2319–2326, 2013.

[14] N. M. Z. Hashim, N. B. Hamdan, Z. Zakaria,

R. A. Hamzah, and A. Salleh, “Flood Detector

Emergency Warning System,” International

Journal Of Engineering And Computer Science

(IJECS), vol. 2, no. 8, pp. 2332–2336, 2013.

[15] P. D. Smith, David R. and Franzon, Verilog

Styles for Synthesis of Digital Systems. Prentice

Hall, 2004.

[16] C. R. Mano, M. Morris and Kime, Logic and

Computer Design Fundamentals, Third.

Pearson Prentice-Hall, 2004.

[17] Z. Brown, Stephen and Vranesic,

Fundamentals of Digital Logic with Verilog

Design. McGraw-Hill, 2003.

[18] D. C. Hyde, “CSCI 320 Computer

Architecture Handbook on Verilog HDL,”

1997. [Online]. Available:

http://www.eg.bucknell.edu/~cs320/1995-

fall/verilog-manual.html. .

[19] M. D. Ciletti, Advanced Digital Design with

Verilog HDL. Prentice-Hall, 2003.

[20] H. A. A. Wahab, E. C. Tan, “CMAC Spectral

Subtraction for Adder/Subtractor,” in Sixth

International Symposium on FPGA

Application, 2001, pp. 707–710.

