Positioning control of XY table using 2-DOF PID controller

Ong, Yee Teng and Chong , Shin Horng and Hee , Wai Keat (2014) Positioning control of XY table using 2-DOF PID controller. Applied Mechanics and Materials. pp. 7-11. ISSN 1660-9336 (In Press)

WarningThere is a more recent version of this item available.
[img] PDF
paper135.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy

Abstract

A two-degree-of-freedom (2-DOF) PID controller is designed for an AC servo ball screw driven XY table. XY table is widely used in manufacturing industry especially in CNC machineries. The most commonly used controller in industries is conventional PID controller. This controller has satisfactory performance, simple structure, and is one-degree-of-freedom (1DOF). Nonetheless, PID controller can only achieve either good set-point response or good disturbance response. This leads to introduction of 2-DOF PID controller which can achieve both good set-point response and disturbance response. In this project, 2-DOF PID is used for accurate tracking purpose. 2-DOF PID controller is designed using two-steps-tuning-method. Disturbance response is optimized by tuning parameters of 〖 K〗_P,T_i,〖and T〗_D using Ziegler-Nichols 2nd method, followed by optimization of set-point response by tuning of 2-DOF parameters, α and β. Tracking performance of 2-DOF PID controller is compared with conventional PI and 1-DOF PID. Maximum absolute error, sum of absolute error, and mean square error are analyzed for all tracking performance of compensated system. Result shows that tracking error compensation (set-point response) of 1-DOF PID controller is better than 2-DOF PID controller. However, this is due to tuning of α and β parameters in simulation in this project. α and β values should be tuned experimentally. Disturbance response of 1-DOF PID and 2-DOF PID are almost similar due to same 〖 K〗_P,T_i,〖and T〗_D values are used in both controllers.

Item Type: Article
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Electrical Engineering > Department of Control, Instrumentation & Automation
Depositing User: Dr Shin Horng Chong
Date Deposited: 27 Nov 2014 16:37
Last Modified: 28 May 2015 04:31
URI: http://eprints.utem.edu.my/id/eprint/13406
Statistic Details: View Download Statistic

Available Versions of this Item

Actions (login required)

View Item View Item