Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells

Zainal Abidin, Nurul Aliyah and Arith, Faiz and Noorasid, Nur Syamimi and Sarkawi, Hafez and Muhammad Mustafa, Ahmad Nizamuddin and Safie, Nur Ezyanie and Mohd Shah, Ahmad Syahiman and Mohd Abid, Mohd Asyadi 'Azam and Chelvanathan, Puvaneswaran and Amin, Nowshad (2023) Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Advances, 13. pp. 33797-33819. ISSN 2046-2069

[img] Text
0194110122023472.pdf

Download (2MB)

Abstract

The conventional electron transport layer (ETL) TiO2 has been widely used in perovskite solar cells (PSCs), which have produced exceptional power conversion efficiencies (PCE), allowing the technology to be highly regarded and propitious. Nevertheless, the recent high demand for energy harvesters in wearable electronics, aerospace, and building integration has led to the need for flexible solar cells. However, the conventional TiO2 ETL layer is less preferred, where a crystallization process at a temperature as high as 450 °C is required, which degrades the plastic substrate. Zinc oxide nanorods (ZnO NRs) as a simple and low-cost fabrication material may fulfil the need as an ETL, but they still suffer from low PCE due to atomic defect vacancy. To delve into the issue, several dopants have been reviewed as an additive to passivate or substitute the Zn2+ vacancies, thus enhancing the charge transport mechanism. This work thereby unravels and provides a clear insight into dopant engineering in ZnO NRs ETL for PSC.

Item Type: Article
Uncontrolled Keywords: Cell engineering, Conversion efficiency, Electron transport properties, Flexible electronics, II-VI semiconductors, Nanorods, Perovskite, Titanium dioxide, Wearable technology, Zinc oxide
Divisions: Faculty of Electronics and Computer Engineering
Depositing User: Norfaradilla Idayu Ab. Ghafar
Date Deposited: 11 Aug 2025 04:58
Last Modified: 11 Aug 2025 04:58
URI: http://eprints.utem.edu.my/id/eprint/28906
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item