Thick-film Piezoceramic Micro-generators

Kok, Swee Leong and Harris, Nick and White, Neil (2008) Thick-film Piezoceramic Micro-generators. Measurement + Control. ISSN 0020-2940

Thick-film_Piezoceramic_Micro-generator.pdf - Published Version

Download (175kB)


Wireless sensor networks have recently become a popular area of active research as they offer the possibility for implementation within the our environment for monitoring physical conditions such as pressure, temperature, acceleration, vibration, and chemical substance present around us. The networks of these systems are built up from a large number of single unit sensor nodes. A sensor node is generally small in physical size (typically a few cm3 or smaller) and consist of a sensor, a transceiver, and supporting electronics. They are connected as a wireless network and are sometimes isolated and embedded in structures, which are not easily accessible. The lifespan of the sensor node is critically dependent upon the power source it contains. Instead of using a limited lifespan source, such as battery as the main power source, ambient energy scavenging offers an improved solution for providing power to miniature sensor nodes for an indefinite period of time. There are several possible mechanisms for ambient energy scavenging including solar, acoustic, thermoelectric, and mechanical vibration. As low-level mechanical vibrations are present in many types of environment this is one possible energy source for harvesting. Basically there are three methods for mechanical vibration to electrical energy conversion: electromagnetic, electrostatic, and piezoelectric. With the decrease in power requirements for Very Large Scale Integrated (VLSI) components for sensor nodes (in the range of a few tens to hundreds of microwatts), the application of piezoelectric materials as micro-generators for harvesting energy from ambient vibration is feasible and has advantages over other techniques in terms of their relatively simple fabrication and the capability for integration with other electronic components.

Item Type: Article
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Electronics and Computer Engineering > Department of Industrial Electronics
Depositing User: Dr. Swee Leong Kok
Date Deposited: 20 Jul 2012 06:38
Last Modified: 03 Jan 2022 17:03
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item