Depth control of an underwater remotely operated vehicle using neural network predictive control

Mohd Aras, Mohd Shahrieel and Abdullah, Shahrum Shah and Abdul Rahman, Ahmad Fadzli Nizam and Hasim, Norhaslinda and Abdul Azis, Fadilah and Lim Wee, Teck and Mohd Nor, Arfah Syahida (2015) Depth control of an underwater remotely operated vehicle using neural network predictive control. Jurnal Teknologi, UTM, 74 (9). pp. 85-93. ISSN 0127-9696

[img]
Preview
PDF
4811-13498-1-SM.pdf - Published Version

Download (535kB) | Preview

Abstract

This paper investigates the depth control of an unmanned underwater remotely operated vehicle (ROV) using neural network predictive control (NNPC). The NNPC is applied to control the depth of the ROV to improve the performances of system response in terms of overshoot. To assess the viability of the method, the system was simulated using MATLAB/Simulink by neural network predictive control toolbox. In this paper also investigates the number of data samples (1000, 5000 and 10,000) to train neural network. The simulation reveals that the NNPC has the better performance in terms of its response, but the execution time will be increased. The comparison between other controller such as conventional PI controller, Linear Quadratic Regulation (LQR) and fuzzy logic controller also covered in this paper where the main advantage of NNPC is the fastest system response on depth control.

Item Type: Article
Uncontrolled Keywords: depth control, unmanned underwater remotely operated vehicle, neural network predictive control
Subjects: T Technology > TC Hydraulic engineering. Ocean engineering
Divisions: Faculty of Electrical Engineering > Department of Mechatronics Engineering
Depositing User: Dr Mohd Shahrieel Mohd Aras
Date Deposited: 06 Jul 2015 07:48
Last Modified: 06 Jul 2015 07:48
URI: http://eprints.utem.edu.my/id/eprint/14663
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item