Shan, Sung Liew and Mohamed, Khalil-Hani and Syafeeza, Ahmad Radzi and Rabia, Bakhteri (2016) Gender Classification: A Convolutional Neural Network Approach. Turkish Journal Of Electrical Engineering and Computer Sciences, 24 (3). pp. 1248-1264. ISSN 1300-0632
Text
Gender Classification- A Convolutional Neural Network Approach.pdf - Published Version Download (663kB) |
Abstract
An approach using a convolutional neural network (CNN) is proposed for real-time gender classification based on facial images. The proposed CNN architecture exhibits a much reduced design complexity when compared with other CNN solutions applied in pattern recognition. The number of processing layers in the CNN is reduced to only four by fusing the convolutional and subsampling layers. Unlike in conventional CNNs, we replace the convolution operation with cross-correlation, hence reducing the computational load. The network is trained using a second-order backpropagation learning algorithm with annealed global learning rates. Performance evaluation of the proposed CNN solution is conducted on two publicly available face databases of SUMS and AT&T. We achieve classification accuracies of 98.75% and 99.38% on the SUMS and AT&T databases, respectively. The neural network is able to process and classify a 32 × 32 pixel face image in less than 0.27 ms, which corresponds to a very high throughput of over 3700 images per second. Training converges within less than 20 epochs. These results correspond to a superior classification performance, verifying that the proposed CNN is an effective real-time solution for gender recognition.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Gender classification, convolutional neural network, fused convolutional and subsampling layers, backpropagation |
Subjects: | T Technology > T Technology (General) |
Divisions: | Faculty of Electronics and Computer Engineering > Department of Computer Engineering |
Depositing User: | Mohd Hannif Jamaludin |
Date Deposited: | 21 Sep 2016 03:19 |
Last Modified: | 11 Sep 2021 02:09 |
URI: | http://eprints.utem.edu.my/id/eprint/17200 |
Statistic Details: | View Download Statistic |
Actions (login required)
View Item |