Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts

Md Arifin, Norihan and Bachok, Norfifah and Abu Bakar, Shahirah and Khashi’ie, Najiyah Safwa (2021) Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts. Mathematics, 9 (8). pp. 1-14. ISSN 2227-7390

[img] Text
BAKAR ET AL. 2021-MATH.PDF

Download (1MB)

Abstract

The study of hybrid nanofluid and its thermophysical properties is emerging since the early of 2000s and the purpose of this paper is to investigate the flow of hybrid nanofluid over a permeable Darcy porous medium with slip, radiation and shrinking sheet. Here, the hybrid nanofluid consists of Cu/water as the base nanofluid and Al2O3-Cu/water works as the two distinct fluids. The governing ordinary differential equations (ODEs) obtained in this study are converted from a series of partial differential equations (PDEs) by the appropriate use of similarity transformation. Two methods of shooting and bvp4c function are applied to solve the involving physical parameters over the hybrid nanofluid flow. From this study, we conclude that the non-uniqueness of solutions exists through a range of the shrinking parameter, which produces the problem of finding a bigger solution than any other between the upper and lower branches. From the analysis, one can observe the increment of heat transfer rate in hybrid nanofluid versus the traditional nanofluid. The results obtained by the stability of solutions prove that the upper solution (first branch) is stable and the lower solution (second branch) is not stable.

Item Type: Article
Uncontrolled Keywords: Boundary layer, Darcy model, Heat transfer, Hybrid nanofluid, Stability analysis
Divisions: Faculty of Mechanical and Manufacturing Engineering Technology
Depositing User: Sabariah Ismail
Date Deposited: 28 Feb 2022 17:01
Last Modified: 26 Jun 2023 12:22
URI: http://eprints.utem.edu.my/id/eprint/25617
Statistic Details: View Download Statistic

Actions (login required)

View Item View Item